cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045529 a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.

Original entry on oeis.org

1, 2, 34, 196418, 37889062373143906, 271964099255182923543922814194423915162591622175362
Offset: 0

Views

Author

Jose Eduardo Blazek, Dec 11 1999

Keywords

Comments

The next term, a(6), has 153 digits. - Harvey P. Dale, Oct 24 2011

Crossrefs

Cf. (k^n)-th Fibonacci number: A058635 (k=2), this sequence (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:
    seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* Artur Jasinski, Oct 05 2008 *)
    RecurrenceTable[{a[0]==1,a[n]==5a[n-1]^3-3a[n-1]},a[n],{n,6}] (* Harvey P. Dale, Oct 24 2011 *)
    NestList[5#^3-3#&,1,5] (* Harvey P. Dale, Dec 21 2014 *)
  • Maxima
    A045529(n):=fib(3^n)$
    makelist(A045529(n),n,0,10); /* Martin Ettl, Nov 12 2012 */

Formula

The first example I know in which a(n) can be expressed as (4/5)^(1/2)*cosh(3^n*arccosh((5/4)^(1/2))).
a(n) = Fibonacci(3^n). - Leroy Quet, Mar 17 2002
a(n+1) = a(n)*A002814(n+1). - Lekraj Beedassy, Jun 16 2003
a(n) = (phi^(3^n) - (1 - phi)^(3^n))/sqrt(5), where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) - 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 24 2022: (Start)
a(2*n+2) == a(2*n) (mod 3^(2*n+1)); a(2*n+3) == a(2*n+1) (mod 3^(2*n+2));
a(2*n+1) + a(2*n) == 0 (mod 3^(2*n+1)).
a(2*n) == 1 (mod 3) and a(2*n+1) == 2 (mod 3).
5*a(n)^2 == 2 (mod 3^(n+1)).
In the ring of 3-adic integers, the sequences {a(2*n)} and {a(2*n+1)} are both Cauchy sequences and converge to the pair of 3-adic roots of the quadratic equation 5*x^2 - 2 = 0. (End)
From Amiram Eldar, Jan 07 2023: (Start)
Product_{n>=1} (1 + 2/(sqrt(5)*a(n)-1)) = phi (A001622).
Product_{n>=1} (1 - 2/(sqrt(5)*a(n)+1)) = 1/phi (A094214).
Both formulas are from Duverney and Kurosawa (2022). (End)

A250486 A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,  0,  0,      0,       0,    0,  0,  0,   ...
  1,  1,  1,      1,       1,    1,  1,  1,   ...
  1,  1,  3,      21,      987,  2178309,     ...
  1,  2,  34,     196418,  37889062373143906, ...
  1,  3,  987,    10610209857723,             ...
  1,  5,  75025,  59425114757512643212875125, ...
  1,  8,  14930352,                           ...
  1,  13, 7778742049,                         ...
		

Crossrefs

Main diagonal gives A250495.
Cf. A000045.

Programs

  • Maple
    A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)

Formula

A(n,k) = [0, 1; 1, 1]^(n^k)[1,2].

A145231 a(n) = Fibonacci(4^n).

Original entry on oeis.org

1, 3, 987, 10610209857723, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Comments

This sequence has the property that a(n+1) is divisible by a(n). Conjecture: each prime divisor can occur only once (i.e., all terms are squarefree). - Artur Jasinski, Oct 05 2008

Crossrefs

Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), this sequence (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 3 else a(n-1)*(5*a(n-1)^2 + 2)*sqrt(5*a(n-1)^2 + 4) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 14 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 6}]
    Table[Round[(4/5)^(1/2)*Cosh[4^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 7}]
    Fibonacci[4^Range[5]] (* Harvey P. Dale, Mar 28 2012 *)

Formula

a(n) = (G^(4^n) - (1-G)^(4^n) )/sqrt(5) where G = (1 + sqrt 5)/2 = A001622.
a(n) = round( sqrt(4/5) *cosh( 4^n*arccosh (sqrt(5/4)) )).
a(n)= A000045(A000302(n)). - Michel Marcus, Nov 07 2013
From Peter Bala, Nov 11 2022: (Start)
a(n+1) = a(n)*(5*a(n)^2 + 2)*sqrt(5*a(n)^2 + 4) for n >= 1.
a(n) == 3 (mod 4) for n >= 1.
a(n+1) == a(n) (mod 2^(2*n+1)).
A341601(n) == a(n) (mod 2^n) for n >= 2.
In the ring of 2-adic integers, the sequence {Fibonacci(4^n)} converges to the 2-adic integer A341603. (End)

A145232 a(n) = Fibonacci(5^n).

Original entry on oeis.org

1, 5, 75025, 59425114757512643212875125, 18526362353047317310282957646406309593963452838196423660508102562977229905562196608078556292556795045922591488273554788881298750625
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Crossrefs

Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), this sequence (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 25*a(n-1)^5 - 25*a(n-1)^3 + 5*a(n-1) end if; end:
    seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 6}]
    Table[Round[N[(2/Sqrt[5])*Cosh[5^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]
    Fibonacci[5^Range[0,4]] (* Harvey P. Dale, Nov 29 2018 *)

Formula

a(n) = (G^(5^n) - (1 - G)^(5^n))/sqrt(5) where G = (1 + sqrt(5))/2.
a(n) = (2/sqrt(5))*cosh((2*k+1)^n*arccosh(sqrt(5)/2)).
a(n) = (2/sqrt(5))*cosh(5^n*arccosh(sqrt(5)/2)).
a(n) = (5^n)*A128935(n). - R. J. Mathar, Nov 04 2010
a(n) = A000045(A000351(n)). - Michel Marcus, Nov 07 2013
a(n+1) = 25*a(n)^5 - 25*a(n)^3 + 5*a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
a(n) = 5^n * Product_{k=0..n-1} (5*a(k)^4 - 5*a(k)^2 + 1) (Frontczak, 2024). - Amiram Eldar, Feb 29 2024

A145233 a(n) = Fibonacci(6^n).

Original entry on oeis.org

1, 8, 14930352, 619220451666590135228675387863297874269396512
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Comments

The next term, a(4), has 271 digits. - Harvey P. Dale, Jul 18 2011

Crossrefs

Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), A145232 (k=5), this sequence (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Magma
    [Fibonacci(6^n): n in [0..5]]; // Vincenzo Librandi, Apr 02 2011
  • Maple
    A145233 := proc(n) combinat[fibonacci](6^n) ; end proc: # R. J. Mathar, Apr 01 2011
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(6^n) - (1 - G)^(6^n))/Sqrt[5]], {n, 1, 6}]
    (* Second program: *)
    Fibonacci[6^Range[4]] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n) = (G^(6^n) - (1 - G)^(6^n))/sqrt(5) where G = (1 + sqrt(5))/2.

A145234 a(n) = Fibonacci(7^n).

Original entry on oeis.org

1, 13, 7778742049, 215414832505658809004682396169711233230800418578767753330908886771798637
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Crossrefs

Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), this sequence (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Magma
    [Fibonacci(7^n): n in [0..5]]; // Vincenzo Librandi, Apr 02 2011
  • Maple
    A145234 := proc(n) combinat[fibonacci](7^n) ; end proc:
    seq(A145234(n),n=1..3) ; # R. J. Mathar, Apr 01 2011
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(7^n) - (1 - G)^(7^n))/Sqrt[5]], {n, 1, 6}]
    (* Second program: *)
    Table[Round[N[(2/Sqrt[5])*Cosh[7^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]

Formula

a(n) = (G^(7^n) - (1 - G)^(7^n))/sqrt(5) where G = (1 + sqrt(5))/2.
a(n) = (2/sqrt(5))*cosh(7^n*arccosh(sqrt(5)/2)).
a(n+1) = 125*a(n)^7 - 175*a(n)^5 + 70*a(n)^3 - 7*a(n) with a(0) = 1. - Peter Bala, Nov 25 2022
Showing 1-6 of 6 results.