cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jose Eduardo Blazek

Jose Eduardo Blazek's wiki page.

Jose Eduardo Blazek has authored 5 sequences.

A238290 a(n+1) = a(n) + 6 + 2*(n - 2*floor(n/2)) for n > 0, a(0) = 0.

Original entry on oeis.org

0, 8, 14, 22, 28, 36, 42, 50, 56, 64, 70, 78, 84, 92, 98, 106, 112, 120, 126, 134, 140, 148, 154, 162, 168, 176, 182, 190, 196, 204, 210, 218, 224, 232, 238, 246, 252, 260, 266, 274, 280, 288, 294, 302, 308, 316, 322, 330, 336, 344, 350, 358, 364, 372, 378
Offset: 0

Author

Jose Eduardo Blazek, Feb 22 2014

Keywords

Examples

			G.f.: 8*x + 14*x^2 + 22*x^3 + 28*x^4 + 36*x^5 + 42*x^6 + 50*x^7 + 56*x^8 + ...
		

Crossrefs

Cf. A047345.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(4+3*x)/((1-x)*(1-x^2)))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    CoefficientList[Series[2 x (4 + 3 x)/((1 - x) (1 - x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    Table[(14 n - (-1)^n + 1)/2, {n, 0, 60}] (* Bruno Berselli, Feb 26 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(2*x*(4+3*x)/((1-x)*(1-x^2)))) \\ G. C. Greubel, Aug 07 2018
    

Formula

a(n) = floor((2*n+1)/4) + 2*floor((2*n+1)/2) + 3*floor(3*(2*n+1)/4).
a(n) = 8*floor((n+1)/2) + 6*floor(n/2).
G.f.: 2 * x * (4 + 3*x) / ((1 - x) * (1 - x^2)). - Michael Somos, Feb 24 2014
a(n) = 2*A047345(n+1) = (14*n - (-1)^n + 1)/2. - Bruno Berselli, Feb 26 2014
E.g.f.: 7*exp(x)*x + sinh(x). - Stefano Spezia, May 15 2021

A213680 a(n) = 2*a(n-1)^2/3-3 with a(0)=6.

Original entry on oeis.org

6, 21, 291, 56451, 2124476931, 3008934820234119171, 6035792501611554034238453484153151491, 24287194081673507672666338605180770497437885188248737771493963111463682051
Offset: 0

Author

Jose Eduardo Blazek, Mar 04 2013

Keywords

Examples

			a(1) = 2*a(0)^2/3-3 = 2*6^2/3-3 = 21,
a(2) = 2*a(1)^2/3-3 = 2*21^2/3-3 = 291,
a(3) = 2*a(2)^2/3-3 = 2*291^2/3-3 = 2*84681/3-3 = 56451.
Or, by the first formula:
a(3) = 3*cosh(2^3*arccosh(2)) = 56451,
a(4) = 3*cosh(2^4*arccosh(2)) = 2124476931.
		

Crossrefs

Cf. A002812.

Programs

  • Sage
    var('x')
    p=2*x^2/3-3
    s=[6]
    for i in [0..8]:
        s=s+[p(s[i])]
    show(s)

Formula

a(n) = 3*cosh(2^n*arccosh(2)).
a(n) = 3*A002812(n). [Giovanni Resta, Mar 04 2013]

A213681 a(n) = a(n-1)^2/2 - 4 with a(0) = 6.

Original entry on oeis.org

6, 14, 94, 4414, 9741694, 47450300994814, 1125765532249223239027447294, 633674016800188444301553476967536472012841942973961214
Offset: 0

Author

Jose Eduardo Blazek, Mar 04 2013

Keywords

Comments

The next term has 108 digits. - Harvey P. Dale, Apr 21 2018

Examples

			a(2) = a(1)^2/2-4 = 14^2/2-4 = 94.
		

Crossrefs

Cf. A005248.

Programs

  • Mathematica
    NestList[#^2/2-4&,6,8] (* Harvey P. Dale, Apr 21 2018 *)
  • Sage
    var('x')
    p=x^2/2-4
    s=[6]
    for i in [0..8]:
        s=s+[p(s[i])]
    show(s)

Formula

a(n) = 4*cosh(2^n*arccosh(3/2)).
a(n) = 2*A005248(2^n). [Bruno Berselli, Mar 04 2013]

A094680 a(n+1) = 4*a(n)^3 - 3*a(n), with a(0) = 2.

Original entry on oeis.org

2, 26, 70226, 1385331749802026, 10634604778476758291777057017318241822792488226
Offset: 0

Author

Jose Eduardo Blazek, Jun 07 2004

Keywords

Comments

Smallest positive integer x satisfying the Pell equation x^2 - 3^(2*n-3) * y^2 = 1. - A.H.M. Smeets, Sep 29 2017
Term a(5) has 139 decimal digits and a(6) has 417 decimal digits. - Andrew Howroyd, Feb 25 2018

Crossrefs

Programs

  • Mathematica
    NestList[4 #^3 - 3 # &, 2, 5] (* Michael De Vlieger, Oct 02 2017 *)
  • PARI
    a(n) = if (n==0, 2, 4*a(n-1)^3 - 3*a(n-1)); \\ Michel Marcus, Oct 03 2017
    
  • PARI
    a(n) = polchebyshev(3^n, 1, 2); \\ Michel Marcus, Oct 03 2017

Formula

a(n) = cosh(3^n*arccosh(2)).
a(n) = ChebyshevT(3^n, 2). - Vladeta Jovovic, Jun 11 2004
From A.H.M. Smeets, Oct 02 2017: (Start)
a(n) = A001075(3^(n-2))
a(n) = A002350(3^(2n-3)). (End)

Extensions

More terms from Vladeta Jovovic, Jun 11 2004
Offset corrected by Michel Marcus, Oct 03 2017

A045529 a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.

Original entry on oeis.org

1, 2, 34, 196418, 37889062373143906, 271964099255182923543922814194423915162591622175362
Offset: 0

Author

Jose Eduardo Blazek, Dec 11 1999

Keywords

Comments

The next term, a(6), has 153 digits. - Harvey P. Dale, Oct 24 2011

Crossrefs

Cf. (k^n)-th Fibonacci number: A058635 (k=2), this sequence (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:
    seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* Artur Jasinski, Oct 05 2008 *)
    RecurrenceTable[{a[0]==1,a[n]==5a[n-1]^3-3a[n-1]},a[n],{n,6}] (* Harvey P. Dale, Oct 24 2011 *)
    NestList[5#^3-3#&,1,5] (* Harvey P. Dale, Dec 21 2014 *)
  • Maxima
    A045529(n):=fib(3^n)$
    makelist(A045529(n),n,0,10); /* Martin Ettl, Nov 12 2012 */

Formula

The first example I know in which a(n) can be expressed as (4/5)^(1/2)*cosh(3^n*arccosh((5/4)^(1/2))).
a(n) = Fibonacci(3^n). - Leroy Quet, Mar 17 2002
a(n+1) = a(n)*A002814(n+1). - Lekraj Beedassy, Jun 16 2003
a(n) = (phi^(3^n) - (1 - phi)^(3^n))/sqrt(5), where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) - 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 24 2022: (Start)
a(2*n+2) == a(2*n) (mod 3^(2*n+1)); a(2*n+3) == a(2*n+1) (mod 3^(2*n+2));
a(2*n+1) + a(2*n) == 0 (mod 3^(2*n+1)).
a(2*n) == 1 (mod 3) and a(2*n+1) == 2 (mod 3).
5*a(n)^2 == 2 (mod 3^(n+1)).
In the ring of 3-adic integers, the sequences {a(2*n)} and {a(2*n+1)} are both Cauchy sequences and converge to the pair of 3-adic roots of the quadratic equation 5*x^2 - 2 = 0. (End)
From Amiram Eldar, Jan 07 2023: (Start)
Product_{n>=1} (1 + 2/(sqrt(5)*a(n)-1)) = phi (A001622).
Product_{n>=1} (1 - 2/(sqrt(5)*a(n)+1)) = 1/phi (A094214).
Both formulas are from Duverney and Kurosawa (2022). (End)