A145275 a(n) = A145232(n+1)/A145232(n).
15005, 792070839820228500005, 311759807762174781605301007201736860141952393239819056256447450170889021063181630442743411596527196875005
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..4
Programs
-
Mathematica
G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/Sqrt[5]]/Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 5}]
Formula
a(n) = (G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/(G^(5^n) - (1 - G)^(5^n)) where G = (1 + sqrt(5))/2.
Comments