Original entry on oeis.org
329, 10749959329, 13354478338703157414450712411084788083329
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^(n + 1)) - (1 - G)^(4^(n + 1)))/Sqrt[5]]/Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 5}]
Original entry on oeis.org
598364773, 27692759465311176949233529747775189817301578781117871380248013
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(7^(n + 1)) - (1 - G)^(7^(n + 1)))/Sqrt[5]]/Expand[(G^(7^n) - (1 - G)^(7^n))/Sqrt[5]], {n, 1, 5}]
Original entry on oeis.org
1866294, 41473935220454958813340461622291147206
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(6^(n + 1)) - (1 - G)^(6^(n + 1)))/Sqrt[5]]/Expand[(G^(6^n) - (1 - G)^(6^n))/Sqrt[5]], {n, 1, 5}]
A181419
Numbers of the form Fibonacci(p^{k+1})/Fibonacci(p^k) where p are primes, k>=1.
Original entry on oeis.org
3, 7, 17, 47, 2207, 5777, 15005, 4870847, 598364773, 192900153617, 23725150497407, 792070839820228500005, 97415813466381445596089, 562882766124611619513723647, 400009475456580321242184872389193
Offset: 1
-
N:= 10^50: # for terms <= N
S:= {}: p:= 1:
do
p:= nextprime(p);
v:= combinat:-fibonacci(p);
for k from 2 do
w:= v;
v:= combinat:-fibonacci(p^k);
r:= v/w;
if r > N then break fi;
S:= S union {r};
od;
if k = 2 then break fi;
od:
sort(convert(S,list)); # Robert Israel, Apr 09 2024
-
t = Sort@ Flatten[ Table[ {Prime[n]^(e + 1), Prime[n]^e}, {n, 8}, {e, 10}], 1]; u = Select[t, First@# < 350 &]; Sort[ Fibonacci[ #[[1]]]/Fibonacci[ #[[2]]] & /@ u] (* Robert G. Wilson v, Oct 21 2010 *)
A219011
Denominators in a product expansion for sqrt(5).
Original entry on oeis.org
5, 15005, 792070839820228500005
Offset: 0
-
a[n_] := LucasL[4*5^n] - LucasL[2*5^n] + 1; Array[a, 3, 0] (* Amiram Eldar, Jul 20 2025 *)
-
A219011(n):=fib(5^(n+1))/fib(5^n)$
makelist(A219011(n),n,0,3);
Showing 1-5 of 5 results.
Comments