Original entry on oeis.org
598364773, 27692759465311176949233529747775189817301578781117871380248013
Offset: 1
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(7^(n + 1)) - (1 - G)^(7^(n + 1)))/Sqrt[5]]/Expand[(G^(7^n) - (1 - G)^(7^n))/Sqrt[5]], {n, 1, 5}]
A045529
a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.
Original entry on oeis.org
1, 2, 34, 196418, 37889062373143906, 271964099255182923543922814194423915162591622175362
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..7
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
- Zalman Usiskin, Problem B-265, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 333; Fibonacci Numbers for Powers of 3, Solution to Problem B-265 by Ralph Garfield and David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315.
-
a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:
seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* Artur Jasinski, Oct 05 2008 *)
RecurrenceTable[{a[0]==1,a[n]==5a[n-1]^3-3a[n-1]},a[n],{n,6}] (* Harvey P. Dale, Oct 24 2011 *)
NestList[5#^3-3#&,1,5] (* Harvey P. Dale, Dec 21 2014 *)
-
A045529(n):=fib(3^n)$
makelist(A045529(n),n,0,10); /* Martin Ettl, Nov 12 2012 */
A250486
A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0
Square array A(n,k) begins:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 3, 21, 987, 2178309, ...
1, 2, 34, 196418, 37889062373143906, ...
1, 3, 987, 10610209857723, ...
1, 5, 75025, 59425114757512643212875125, ...
1, 8, 14930352, ...
1, 13, 7778742049, ...
Rows n=0-10 give:
A000007,
A000012,
A058635,
A045529,
A145231,
A145232,
A145233,
A145234,
A250487,
A250488,
A250489.
-
A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
A145231
a(n) = Fibonacci(4^n).
Original entry on oeis.org
1, 3, 987, 10610209857723, 141693817714056513234709965875411919657707794958199867
Offset: 0
-
a := proc(n) option remember; if n = 1 then 3 else a(n-1)*(5*a(n-1)^2 + 2)*sqrt(5*a(n-1)^2 + 4) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 14 2022
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(4^n) - (1 - G)^(4^n))/Sqrt[5]], {n, 1, 6}]
Table[Round[(4/5)^(1/2)*Cosh[4^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 7}]
Fibonacci[4^Range[5]] (* Harvey P. Dale, Mar 28 2012 *)
A145232
a(n) = Fibonacci(5^n).
Original entry on oeis.org
1, 5, 75025, 59425114757512643212875125, 18526362353047317310282957646406309593963452838196423660508102562977229905562196608078556292556795045922591488273554788881298750625
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..5
- Robert Frontczak, Problem B-1341, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 1 (2024), p. 84.
- Thomas Koshy and Zhenguang Gao, Polynomial Extensions of a Diminnie Delight, Fibonacci Quart. 55 (2017), no. 1, 13-20.
- Achilleas Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295-296.
-
a := proc(n) option remember; if n = 0 then 1 else 25*a(n-1)^5 - 25*a(n-1)^3 + 5*a(n-1) end if; end:
seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 6}]
Table[Round[N[(2/Sqrt[5])*Cosh[5^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]
Fibonacci[5^Range[0,4]] (* Harvey P. Dale, Nov 29 2018 *)
A145233
a(n) = Fibonacci(6^n).
Original entry on oeis.org
1, 8, 14930352, 619220451666590135228675387863297874269396512
Offset: 0
-
[Fibonacci(6^n): n in [0..5]]; // Vincenzo Librandi, Apr 02 2011
-
A145233 := proc(n) combinat[fibonacci](6^n) ; end proc: # R. J. Mathar, Apr 01 2011
-
G = (1 + Sqrt[5])/2; Table[Expand[(G^(6^n) - (1 - G)^(6^n))/Sqrt[5]], {n, 1, 6}]
(* Second program: *)
Fibonacci[6^Range[4]] (* Harvey P. Dale, Jul 18 2011 *)
Showing 1-6 of 6 results.
Comments