A008973
Fibonacci number F(n) to power F(n).
Original entry on oeis.org
1, 1, 1, 4, 27, 3125, 16777216, 302875106592253, 5842587018385982521381124421, 11756638905368616011414050501310355554617941909569536, 524744532468751923546122657597368049278513737089035272057324643668607677682302892208099365234375
Offset: 0
A250486
A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0
Square array A(n,k) begins:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 3, 21, 987, 2178309, ...
1, 2, 34, 196418, 37889062373143906, ...
1, 3, 987, 10610209857723, ...
1, 5, 75025, 59425114757512643212875125, ...
1, 8, 14930352, ...
1, 13, 7778742049, ...
Rows n=0-10 give:
A000007,
A000012,
A058635,
A045529,
A145231,
A145232,
A145233,
A145234,
A250487,
A250488,
A250489.
-
A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
Showing 1-2 of 2 results.