cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A250482 Numbers of the form 2^x + y^2, with x and y >=0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 24, 25, 26, 27, 29, 32, 33, 36, 37, 38, 40, 41, 44, 48, 50, 51, 52, 53, 57, 64, 65, 66, 68, 72, 73, 80, 81, 82, 83, 85, 89, 96, 97, 100, 101, 102, 104, 108, 113, 116, 122, 123, 125, 128, 129, 132, 137, 144
Offset: 1

Views

Author

Vincenzo Librandi, Nov 24 2014

Keywords

Comments

No terms are congruent to 7 mod 8: subsequence of A004777.

Examples

			12 is in this sequence because 2^3+2^2 = 12.
51 is in this sequence because 2^1+7^2 = 51.
		

Crossrefs

Cf. sequences of the type k^x+y^k: this sequence (k=2), A250483 (k=3), A250545 (k=4), A250546 (k=5), A250547 (k=6), A250715 (k=7).

Programs

  • Mathematica
    nn=15; Union[Select[Flatten[Table[2^x + y^2, {x, 0, nn}, {y, 0, nn}]], # <=nn^2 &]]
  • PARI
    isok(n) = {k=0; while (2^k <= n, if (issquare(n - 2^k), return(1)); k++;); return (0);} \\ Michel Marcus, Nov 24 2014

A250844 Primes of the form 7^x + y^7 with x, y > 0.

Original entry on oeis.org

16433, 33191, 134033, 6044737, 40633543, 50353607, 268435463, 268437857, 268452263, 274200257, 1977343127, 2245762199, 2494358231, 4471684631, 4586471767, 13841567137, 21870016807, 21870117649, 52523350487, 54500676887, 78364166497, 92205451297, 97157445863
Offset: 1

Views

Author

Vincenzo Librandi, Dec 01 2014

Keywords

Comments

Conjecture: a(n+1)>=a(n)+42, with equality for infinitely many n,
namely those of the form a(n)=7^1+y^7, a(n+1)=7^2+y^7. - Robert Israel, May 09 2018

Examples

			16433 is in this sequence because 16433 is prime and 7^2+3^7 = 16433.
33191 is in this sequence because 33191 is prime and 7^5+4^7 = 33191.
		

Crossrefs

Cf. A250715.
Cf. similar sequences listed in A250481.

Programs

  • Maple
    N:= 10^12: # to get all terms <= N
    sort(select(isprime, [seq(seq(7^x+y^7, y=2..floor((N-7^x)^(1/7)),2),x=1..floor(log[7](N)))])); # Robert Israel, May 09 2018
  • Mathematica
    f[x_, y_]:= 7^x + y^7; lst={}; Do[p=f[x, y]; If[PrimeQ[p], AppendTo[lst, p]], {y, 50}, {x, 50}]; Take[Union[lst], 30]
    With[{nn=40},Take[Sort[Select[7^#[[1]]+#[[2]]^7&/@Tuples[Range[nn],2], PrimeQ]],nn]] (* Harvey P. Dale, May 28 2015 *)
Showing 1-2 of 2 results.