cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251260 Expansion of (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 2, 3, 6, 8, 13, 16, 24, 28, 40, 45, 61, 68, 89, 97, 124, 134, 167, 179, 219, 233, 281, 297, 353, 372, 437, 458, 533, 557, 642, 669, 765, 795, 903, 936, 1056, 1093, 1226, 1266, 1413, 1457, 1618, 1666, 1842, 1894, 2086, 2142, 2350, 2411, 2636, 2701, 2944
Offset: 0

Views

Author

Michael Somos, Mar 20 2015

Keywords

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 8*x^4 + 13*x^5 + 16*x^6 + 24*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + 2*x+x^2+x^3)/((1-x^2)^2*(1-x^3)*(1-x^4)))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := Quotient[ 5 n^3 + If[ OddQ[n], 66 n^2 + 249 n, 57 n^2 + 204 n] + 288, 288];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 6, (u + v < x + w && k == 0) || (u + v > x + w && x + u + v + w == 2 k + 1)}, {x, u, v, w, k}, Integers, 10^9];
    LinearRecurrence[{0,2,1,0,-2,-2,0,1,2,0,-1},{1,2,3,6,8,13,16,24,28,40,45},60] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    {a(n) = (5*n^3 + if( n%2, 66*n^2 + 249*n, 57*n^2 + 204*n) + 288) \ 288};
    
  • PARI
    {a(n) = polcoeff( if( n<0, n = -8-n; -(1 + x + 2*x^2 + x^3), 1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
    

Formula

a(n) = A165188(n+1) + A254708(n-1) = A254594(n-1) + A008763(n+4) for all n in Z.
0 = a(n) - 2*a(n+2) - a(n+3) + 2*a(n+5) + 2*a(n+6) - a(n+8) - 2*a(n+9) + a(n+11) for all n in Z.
a(2*n) = A254875(n) for all n in Z.
G.f.: (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)).