A251417 Lengths of runs of identical terms in A251416.
1, 1, 1, 5, 1, 5, 1, 6, 1, 7, 1, 12, 8, 10, 1, 17, 8, 1, 13, 13, 13, 5, 10, 11, 5, 9, 8, 19, 10, 11, 7, 11, 5, 9, 27, 9, 13, 5, 23, 5, 9, 17, 9, 11, 11, 7, 21, 9, 7, 5, 17, 27, 11, 7, 9, 17, 5, 13, 9, 21, 11, 7, 13, 9, 9
Offset: 1
Keywords
Examples
See A251595.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (group) a251417 n = a251417_list !! (n-1) a251417_list = map length $ group a251416_list -- Reinhard Zumkeller, Dec 05 2014
-
Mathematica
termsOfA251416 = 700; f[lst_List] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, termsOfA251416 - 3]; b[1] = 2; b[n_] := b[n] = For[k = b[n-1], True, k++, If[FreeQ[A098550[[1 ;; n]], k], Return[k]]]; A251416 = Array[b, termsOfA251416]; Length /@ Split[A251416] (* Jean-François Alcover, Aug 01 2018, after Robert G. Wilson v *)
Formula
Let f(n)=A098551(A251595(n)). Then one can prove that A251417(n) = f(n) - f(n-1), n>=2. - Vladimir Shevelev, Dec 09 2014
Comments