cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A220755 Numbers n such that n^2 + n(n+1)/2 is an oblong number (A002378).

Original entry on oeis.org

0, 1, 28, 117, 2760, 11481, 270468, 1125037, 26503120, 110242161, 2597035308, 10802606757, 254482957080, 1058545220041, 24936732758548, 103726628957277, 2443545327380640, 10164151092593121, 239442505350544188, 995983080445168597, 23462921979025949800
Offset: 1

Views

Author

Alex Ratushnyak, Apr 13 2013

Keywords

Comments

Numbers n such that 6*n^2 + 2*n + 1 is a square. - Joerg Arndt, Apr 14 2013
a(n+4) - a(n) is divisible by 40. (a(n+2) - a(n)) mod 10 = period 4: repeat 8, 6, 2, 4. See A000689. - Paul Curtz, Apr 15 2013
For this 5 consecutive terms recurrence,the main (or principal) sequence is: CRR(n)= 0, 0, 0, 0, 1, 1, 99, 99, 9702, 9702,... . - Paul Curtz, Apr 16 2013
Also numbers n such that the sum of the octagonal numbers N(n) and N(n+1) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 09 2014

Crossrefs

Cf. A000217, A005449 (n^2 + n(n+1)/2).
Cf. A011916 (numbers n>=0 such that n^2 + n(n+1)/2 is a triangular number).
Cf. A220186 (numbers n>=0 such that n^2 + n(n+1)/2 is a square).
Cf. A220185 (numbers n>=0 such that n^2 + n(n+1) is an oblong number).
(Example of a family of main sequences: A131577, A024495, A000749, A139761. )
Cf. A251793.

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 rootPronic(U64 a) {
        U64 sr = 1L<<31, s, b;
        while (a < sr*(sr+1))  sr>>=1;
        for (b = sr>>1; b; b>>=1) {
                s = sr+b;
                if (a >= s*(s+1))  sr = s;
        }
        return sr;
    }
    int main() {
      U64 a, n, r, t;
      for (n=0; n < 3L<<30; n++) {
        a = n*(n+1)/2 + n*n;
        t = rootPronic(a);
        if (a == t*(t+1)) {
            printf("%llu\n", n);
        }
      }
    }
    
  • Mathematica
    LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 28, 117, 2760}, 30] (* Giovanni Resta, Apr 14 2013 *)
    CoefficientList[Series[x (1 + 27 x - 9 x^2 - 3 x^3)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 13 2014 *)
  • Maxima
    makelist(expand(((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12), n, 1, 25); /* Bruno Berselli, Apr 14 2013 */
  • PARI
    concat([0], Vec( x * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ) + O(x^66) ) )  /* Joerg Arndt, Apr 14 2013 */
    

Formula

G.f.: x^2 * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ). - Giovanni Resta, Apr 14 2013, adapted by Vincenzo Librandi Aug 13 2014
a(n) = ((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12. - Bruno Berselli, Apr 14 2013
a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).

Extensions

a(11)-a(21) from Giovanni Resta, Apr 14 2013
Showing 1-1 of 1 results.