A220755 Numbers n such that n^2 + n(n+1)/2 is an oblong number (A002378).
0, 1, 28, 117, 2760, 11481, 270468, 1125037, 26503120, 110242161, 2597035308, 10802606757, 254482957080, 1058545220041, 24936732758548, 103726628957277, 2443545327380640, 10164151092593121, 239442505350544188, 995983080445168597, 23462921979025949800
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
Crossrefs
Programs
-
C
#include
typedef unsigned long long U64; U64 rootPronic(U64 a) { U64 sr = 1L<<31, s, b; while (a < sr*(sr+1)) sr>>=1; for (b = sr>>1; b; b>>=1) { s = sr+b; if (a >= s*(s+1)) sr = s; } return sr; } int main() { U64 a, n, r, t; for (n=0; n < 3L<<30; n++) { a = n*(n+1)/2 + n*n; t = rootPronic(a); if (a == t*(t+1)) { printf("%llu\n", n); } } } -
Mathematica
LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 28, 117, 2760}, 30] (* Giovanni Resta, Apr 14 2013 *) CoefficientList[Series[x (1 + 27 x - 9 x^2 - 3 x^3)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 13 2014 *)
-
Maxima
makelist(expand(((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12), n, 1, 25); /* Bruno Berselli, Apr 14 2013 */
-
PARI
concat([0], Vec( x * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ) + O(x^66) ) ) /* Joerg Arndt, Apr 14 2013 */
Formula
G.f.: x^2 * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ). - Giovanni Resta, Apr 14 2013, adapted by Vincenzo Librandi Aug 13 2014
a(n) = ((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12. - Bruno Berselli, Apr 14 2013
a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
Extensions
a(11)-a(21) from Giovanni Resta, Apr 14 2013
Comments