cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A252582 Triangular array of values of Wieferich primes p in A252232 read by rows.

Original entry on oeis.org

2, 2, 3, 3, 7, 13, 2, 3, 11, 157, 2, 5, 7, 19, 83, 2, 11, 17, 109, 239, 401, 5, 7, 11, 13, 83, 173, 1259, 2, 3, 5, 11, 31, 37, 61, 109, 2, 3, 5, 7, 43, 293, 317, 383, 1627, 2, 5, 7, 11, 31, 47, 89, 167, 523, 619
Offset: 1

Views

Author

Felix Fröhlich, Dec 18 2014

Keywords

Examples

			Triangle starts
  2
  2  3
  3  7 13
  2  3 11 157
  2  5  7  19  83
  2 11 17 109 239 401
  5  7 11  13  83 173 1259
  2  3  5  11  31  37   61 109
  2  3  5   7  43 293  317 383 1627
  2  5  7  11  31  47   89 167  523 619
		

Crossrefs

Cf. A252232.

Programs

  • Mathematica
    Flatten@Table[k=2;While[Length[s=Select[Prime@Range@PrimePi[k-1],PowerMod[k,(#-1),#^2]==1&]]!=n,k=NextPrime@k];s,{n,8}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)

A255885 Smallest base b such that there exist exactly n Wieferich pseudoprimes (composites c satisfying b^(c-1) == 1 (mod c^2)) less than b.

Original entry on oeis.org

17, 65, 145, 485, 649, 1297, 577, 2024, 5185, 8182, 7057, 8749, 14401, 30753, 56449, 57601, 77401, 129473, 51841, 129601, 254017, 296449, 202501, 389377
Offset: 1

Views

Author

Felix Fröhlich, Mar 09 2015

Keywords

Crossrefs

Programs

  • PARI
    for(n=1, 10, b=2; while(b > 0, i=0; forcomposite(c=2, b, if(Mod(b, c^2)^(c-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
    
  • Python
    from itertools import count
    from sympy import isprime
    def A255885(n):
        for b in count(1):
            if n == sum(1 for c in range(2,b+1) if not isprime(c) and pow(b,c-1,c**2) == 1):
                return b # Chai Wah Wu, May 18 2022

Extensions

a(20) from Chai Wah Wu, May 18 2022
a(21)-a(24) from Chai Wah Wu, May 19 2022

A255901 Smallest base b such that there exist exactly n Wieferich primes (primes p satisfying b^(p-1) == 1 (mod p^2)) less than b.

Original entry on oeis.org

5, 17, 19, 116, 99, 361, 1451, 1693, 10768, 13834, 208301, 548291
Offset: 1

Views

Author

Felix Fröhlich, Mar 10 2015

Keywords

Examples

			From _Robert G. Wilson v_, Mar 11 2015: (Start)
n        b  p
1:       5 {2}
2:      17 {2, 3}
3:      19 {3, 7, 13}
4:     116 {3, 7, 19, 47}
5:      99 {5, 7, 13, 19, 83}
6:     361 {2, 3, 7, 13, 43, 137}
7:    1451 {5, 7, 11, 13, 83, 173, 1259}
8:    1693 {2, 3, 5, 11, 31, 37, 61, 109}
9:   10768 {5, 11, 17, 19, 79, 101, 139, 6343, 10177}
10:  13834 {3, 11, 17, 19, 43, 139, 197, 2437, 5849, 6367}
11: 208301 {2, 5, 29, 47, 59, 113, 661, 8209, 13679, 15679, 55633}
12: 548291 {7, 11, 19, 29, 31, 37, 97, 211, 547, 911, 2069, 28927}
... (End)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, p}, While[p = Prime@ Range@ PrimePi[b - 1]; Count[ PowerMod[b, p - 1, p^2], 1] != n, b++]; b]; Array[f, 11] (* Robert G. Wilson v, Mar 11 2015 *)
  • PARI
    for(n=1, 10, b=2; while(b > 0, i=0; forprime(p=1, b, if(Mod(b, p^2)^(p-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
    
  • Python
    from itertools import count
    from sympy import primerange
    def A255901(n):
        for b in count(1):
            if n == sum(1 for p in primerange(2,b+1) if pow(b,p-1,p**2) == 1):
                return b # Chai Wah Wu, May 18 2022

Formula

For all n a(n) <= A252232(n).
a(n) = A252232(n) iff a(n) is prime.

Extensions

a(11) from Robert G. Wilson v, Mar 11 2015
a(12) from Robert G. Wilson v, Mar 12 2015
Showing 1-3 of 3 results.