A252279 Primes p congruent to 1 mod 16 such that x^8 = 2 has a solution mod p.
257, 337, 881, 1217, 1249, 1553, 1777, 2113, 2593, 2657, 2833, 4049, 4177, 4273, 4481, 4513, 4721, 4993, 5297, 6353, 6449, 6481, 6529, 6689, 7121, 7489, 8081, 8609, 9137, 9281, 9649, 10177, 10337, 10369, 10433, 10657, 11329, 11617, 11633, 12049, 12241, 12577
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
- Index entries for related sequences
Programs
-
Magma
[p: p in PrimesUpTo(12577) | p mod 16 eq 1 and exists(t){x : x in ResidueClassRing(p) | x^8 eq 2}]; // Arkadiusz Wesolowski, Dec 19 2020
-
PARI
isok(p) = isprime(p) && (Mod(p, 16) == 1) && ispower(Mod(2, p), 8); \\ Michel Marcus, Dec 19 2020
Comments