A252283 Intersection of A251964, A252280 and A252281.
2, 5, 7, 241, 383, 421, 523, 947, 971, 1013, 1031, 1033, 1123, 1973, 2207, 2311, 2837, 2927, 4373, 4721, 5507, 6301, 8011, 8297, 9319, 10141, 12413, 14071, 14081, 17957, 18311, 18353, 19163, 21013, 21401, 22501, 22901, 28211, 30103, 32027, 37699, 38083, 40507, 42797, 43321
Offset: 1
Programs
-
Mathematica
s[p_, k_] := Module[{s = Total[IntegerDigits[p^k]]}, s/2^IntegerExponent[s, 2]]; f[p_, q_] := Module[{k = 1}, While[! Divisible[s[p, k], q], k++]; k]; okQ[p_, q_] := s[p, f[p, q]] == q; Select[Range[2400], PrimeQ[#] && okQ[#, 5] && okQ[#, 7] && okQ[#, 11] &] (* Amiram Eldar, Dec 08 2018 *)
-
PARI
s(p,k) = my(s=sumdigits(p^k)); s >> valuation(s, 2); f5(p) = my(k=1); while(s(p,k) % 5, k++); k; isok5(p) = s(p, f5(p)) == 5; f7(p) = my(k=1); while(s(p,k) % 7, k++); k; isok7(p) = s(p, f7(p)) == 7; f11(p) = my(k=1); while(s(p,k) % 11, k++); k; isok11(p) = s(p, f11(p)) == 11; lista(nn) = forprime(p=2, nn, if (isok5(p) && isok7(p) && isok11(p), print1(p, ", "))); \\ Michel Marcus, Dec 08 2018
Extensions
More terms from Michel Marcus, Dec 08 2018
Comments