cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252354 Number of Motzkin paths of length n with no level steps at height 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 46, 106, 248, 584, 1389, 3329, 8047, 19607, 48167, 119287, 297829, 749632, 1902044, 4864553, 12538933, 32568528, 85224251, 224618900, 596106393, 1592429464, 4280667705, 11575188106, 31474407317, 86029586086, 236292044931, 651952466845
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
  • PARI
    x='x + O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))) \\ G. C. Greubel, Feb 14 2017

Formula

a(n) = a(n-1) + Sum_{j=0..n-2} A217312(j)*a(n-j).
G.f: 1/(1-x-x^2(1/(1-x-x^2*R(x)))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+3/2) / (32*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (-n+3)*a(n) +3*(2*n-7)*a(n-1) +(-7*n+24)*a(n-2) +2*(-7*n+36)*a(n-3) +2*(11*n-51)*a(n-4) +3*(3*n-23)*a(n-5) +(-10*n+63)*a(n-6) +3*(n-6)*a(n-7)=0. - R. J. Mathar, Sep 24 2016