A252354 Number of Motzkin paths of length n with no level steps at height 2.
1, 1, 2, 4, 9, 20, 46, 106, 248, 584, 1389, 3329, 8047, 19607, 48167, 119287, 297829, 749632, 1902044, 4864553, 12538933, 32568528, 85224251, 224618900, 596106393, 1592429464, 4280667705, 11575188106, 31474407317, 86029586086, 236292044931, 651952466845
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[1/(1-x-x^2(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
-
PARI
x='x + O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))) \\ G. C. Greubel, Feb 14 2017
Formula
a(n) = a(n-1) + Sum_{j=0..n-2} A217312(j)*a(n-j).
G.f: 1/(1-x-x^2(1/(1-x-x^2*R(x)))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+3/2) / (32*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (-n+3)*a(n) +3*(2*n-7)*a(n-1) +(-7*n+24)*a(n-2) +2*(-7*n+36)*a(n-3) +2*(11*n-51)*a(n-4) +3*(3*n-23)*a(n-5) +(-10*n+63)*a(n-6) +3*(n-6)*a(n-7)=0. - R. J. Mathar, Sep 24 2016