A252424 Numbers k such that sum of odd divisors of k equals sum of squares of primes dividing k.
18, 36, 72, 144, 234, 288, 468, 576, 936, 1152, 1872, 2304, 3744, 4608, 7488, 9216, 14976, 18432, 29952, 36864, 59904, 73728, 119808, 147456, 239616, 294912, 479232, 589824, 958464, 1179648, 1916928, 2359296, 3833856, 4718592, 7667712, 9437184, 15335424, 18874368
Offset: 1
Keywords
Examples
18 is in the sequence because the prime factors of 18 are {2, 3}, the odd divisors of 18 are {1, 3, 9} => 2^2 + 3^2 = 1 + 3 + 9 = 13. Or 18 => A000593(18) = A005063(18) = 13.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..56
Programs
-
Maple
with(numtheory):nn:=10^5: for n from 2 to nn do: x:=factorset(n):n0:=nops(x): s0:=sum('x[i]^2','i'=1..n0): y:=divisors(n):n1:=nops(y): s :=0 : for j from 1 to n1 do : if irem (y[j],2)=1 then s:=s+y[j]: else fi: od: if s=s0 then printf(`%d, `,n): else fi: od:
-
Mathematica
a252424[n_Integer] := Module[{f, g}, f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ (First@Transpose@FactorInteger[x]^2); Rest@Select[Range[n], f[#] == g[#] &]]; a252424[10^6] (* Michael De Vlieger, Dec 17 2014 *) Select[Range[19*10^6],Total[Select[Divisors[#],OddQ]]==Total[ FactorInteger[ #][[All,1]]^2]&] (* Harvey P. Dale, May 11 2020 *) f[p_, e_] := If[p == 2, 1, (p^(e + 1) - 1)/(p - 1)]; q[n_] := Times @@ f @@@ (fct = FactorInteger[n]) == Total[fct[[;; , 1]]^2]; Select[Range[2, 10^6], q] (* Amiram Eldar, Jul 09 2022 *)
-
PARI
isok(n) = my(f = factor(n)); sum(i=1, #f~, f[i,1]^2) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Dec 17 2014
Comments