cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252424 Numbers k such that sum of odd divisors of k equals sum of squares of primes dividing k.

Original entry on oeis.org

18, 36, 72, 144, 234, 288, 468, 576, 936, 1152, 1872, 2304, 3744, 4608, 7488, 9216, 14976, 18432, 29952, 36864, 59904, 73728, 119808, 147456, 239616, 294912, 479232, 589824, 958464, 1179648, 1916928, 2359296, 3833856, 4718592, 7667712, 9437184, 15335424, 18874368
Offset: 1

Views

Author

Michel Lagneau, Dec 17 2014

Keywords

Comments

Numbers k such that A000593(k) = A005063(k).
a(n) == 0 (mod 18), and the numbers 18*2^m, m = 0,1,... are in the sequence because the odd divisors are {1, 3, 9}, the prime factors are {2, 3} => 2^2 + 3^2 = 1 + 3 + 9 = 13.
The numbers of the form 18*13*2^m are in the sequence because the odd divisors are {1, 3, 9, 13, 39, 117}, the prime factors are {2, 3, 13} => 2^2 + 3^2 + 13^2 = 1 + 3 + 9 + 13 + 39 + 117 = 182.

Examples

			18 is in the sequence because the prime factors of 18 are {2, 3}, the odd divisors of 18 are {1, 3, 9} => 2^2 + 3^2 = 1 + 3 + 9 = 13.
Or 18 => A000593(18) = A005063(18) = 13.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^5:
    for n from 2 to nn do:
       x:=factorset(n):n0:=nops(x):
       s0:=sum('x[i]^2','i'=1..n0):
       y:=divisors(n):n1:=nops(y):
       s :=0 :
            for j from 1 to n1 do :
           if irem (y[j],2)=1 then s:=s+y[j]:
          else
          fi:
        od:
         if s=s0
        then
       printf(`%d, `,n):
       else
       fi:
    od:
  • Mathematica
    a252424[n_Integer] := Module[{f, g},
      f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &];
      g[x_] := Plus @@ (First@Transpose@FactorInteger[x]^2);
    Rest@Select[Range[n], f[#] == g[#] &]]; a252424[10^6] (* Michael De Vlieger, Dec 17 2014 *)
    Select[Range[19*10^6],Total[Select[Divisors[#],OddQ]]==Total[ FactorInteger[ #][[All,1]]^2]&] (* Harvey P. Dale, May 11 2020 *)
    f[p_, e_] := If[p == 2, 1, (p^(e + 1) - 1)/(p - 1)]; q[n_] := Times @@ f @@@ (fct = FactorInteger[n]) == Total[fct[[;; , 1]]^2]; Select[Range[2, 10^6], q] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    isok(n) = my(f = factor(n)); sum(i=1, #f~, f[i,1]^2) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Dec 17 2014