A252463 Hybrid shift: a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1); shift the even numbers one bit right, shift the prime factorization of odd numbers one step towards smaller primes.
1, 1, 2, 2, 3, 3, 5, 4, 4, 5, 7, 6, 11, 7, 6, 8, 13, 9, 17, 10, 10, 11, 19, 12, 9, 13, 8, 14, 23, 15, 29, 16, 14, 17, 15, 18, 31, 19, 22, 20, 37, 21, 41, 22, 12, 23, 43, 24, 25, 25, 26, 26, 47, 27, 21, 28, 34, 29, 53, 30, 59, 31, 20, 32, 33, 33, 61, 34, 38, 35, 67, 36, 71, 37, 18, 38, 35, 39, 73, 40, 16
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
Crossrefs
Programs
-
Mathematica
Table[Which[n == 1, 1, EvenQ@ n, n/2, True, Times @@ Power[ Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n], {n, 81}] (* Michael De Vlieger, Sep 16 2017 *)
-
PARI
a064989(n) = factorback(Mat(apply(t->[max(precprime(t[1]-1), 1), t[2]], Vec(factor(n)~))~)); \\ A064989 a(n) = if (n==1, 1, if (n%2, a064989(n), n/2)); \\ Michel Marcus, Oct 13 2021
-
Python
from sympy import factorint, prevprime from operator import mul def a064989(n): f = factorint(n) return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f]) def a(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Sep 15 2017
-
Scheme
(define (A252463 n) (cond ((<= n 1) n) ((even? n) (/ n 2)) (else (A064989 n))))
Formula
a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1).
Other identities. For all n >= 1:
a(2n-1) = A064216(n).
Above means: if n is odd, A001222(a(n)) = A001222(n) and if n is even, A001222(a(n)) = A001222(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/8 + (1/2) * Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.2905279467..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023
Comments