A252654 Number of multisets of nonempty words with a total of n letters over n-ary alphabet.
1, 1, 7, 64, 843, 13876, 276792, 6438797, 170938483, 5091463423, 167965714273, 6074571662270, 238837895468954, 10138497426332796, 461941179848628434, 22478593443737857695, 1163160397700757351363, 63760710281671647692688, 3690276585886363643056992
Offset: 0
Keywords
Examples
a(2) = 7: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n=0, 1, add(add( d*k^d, d=divisors(j)) *A(n-j, k), j=1..n)/n) end: a:= n-> A(n$2): seq(a(n), n=0..25);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*k^d, {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n]; a[n_] := A[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
Formula
a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(n^j).
a(n) = n-th term of the Euler transform of the powers of n.
a(n) ~ n^(n-3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Mar 14 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - n*x^k))). - Ilya Gutkovskiy, Nov 20 2018
Extensions
New name from comment by Alois P. Heinz, Sep 21 2018