A252659 Numbers m such that 6^m - m is a semiprime.
2, 3, 5, 10, 15, 23, 34, 37, 47, 70, 259, 275, 278, 497, 563
Offset: 1
Examples
2 is in this sequence because 6^2-2 = 2*17 is semiprime. 10 is in this sequence because 6^10-10 = 2*30233083 and these two factors are prime.
Links
- FactorDB, Status of 6^617-617
Crossrefs
Cf. similar sequences listed in A252656.
Programs
-
Magma
IsSemiprime:=func; [m: m in [1..90] | IsSemiprime(s) where s is 6^m-m];
-
Maple
Res:= NULL: for n from 1 to 100 do F:= ifactors(6^n-n, easy)[2]; if add(t[2], t=F) >= 3 or (hastype(F, symbol) and add(t[2], t=F) >= 2) then flag:= false elif add(t[2], t=F) = 2 and not hastype(F, symbol) then flag:= true else flag:= evalb(numtheory:-bigomega(6^n-n)=2) fi; if flag then Res:= Res, n fi od: Res; # Robert Israel, Sep 06 2016
-
Mathematica
Select[Range[90], PrimeOmega[6^# - #]== 2&]
Extensions
a(11)-a(15) from Kevin P. Thompson, Apr 29 2022
Comments