A252656 Numbers n such that 3^n - n is a semiprime.
4, 6, 10, 25, 28, 32, 98, 124, 146, 164, 182, 190, 200, 220, 226, 230, 248, 280, 362, 376, 418, 446, 518, 544
Offset: 1
Examples
4 is in this sequence because 3^4 - 4 = 7*11 is semiprime. 10 is in this sequence because 3^10 - 10 = 43*1373 and these two factors are prime.
Links
- factordb.com, Status of 3^626-626.
Crossrefs
Programs
-
Magma
IsSemiprime:=func; [m: m in [2..150] | IsSemiprime(s) where s is 3^m-m];
-
Maple
select(n -> numtheory:-bigomega(3^n - n) = 2, [$1..150]); # Robert Israel, Jan 02 2015
-
Mathematica
Select[Range[150], PrimeOmega[3^# - #] == 2 &]
-
PARI
is(m) = bigomega(3^m-m)==2 \\ Felix Fröhlich, Dec 30 2014
-
PARI
n=1;while(n<100,s=3^n-n;c=0;forprime(p=1,10^4,if(s%p,c++);if(s%p==0,s1=s/p;if(ispseudoprime(s1),print1(n,", ");c=0;break);if(!ispseudoprime(s1),c=0;break)));if(!c,n++);if(c,if(bigomega(s)==2,print1(n,", "));n++)) \\ Derek Orr, Jan 02 2015
Extensions
a(10) from Felix Fröhlich, Dec 30 2014
a(11)-a(14) from Charles R Greathouse IV, Jan 02 2015
a(15)-a(24) from Luke March, Aug 21 2015
Comments