A252737 Row sums of irregular tables A005940, A163511, and A332977.
1, 2, 7, 28, 130, 702, 4384, 31516, 260068, 2445372, 25796360, 299286550, 3751803964, 50211590696, 712746859372, 10697637496288, 169490803535680, 2830925427778810, 49785906936838240, 921273098388684878, 17944637546960083042, 368472898102440537484, 7993616254370783660414, 183539682466936703629744
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-`if`( i=0, j, 1), j)*ithprime(j), j=1..`if`(i=0, n, i))) end: a:= n-> b(n, 0): seq(a(n), n=0..23); # Alois P. Heinz, Mar 04 2020
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - If[i == 0, j, 1], j]* Prime[j], {j, 1, If[i == 0, n, i]}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz *)
-
PARI
allocatemem(234567890); A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus A252737print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 0; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s += lev[i+1]))); write("b252737.txt", n, " ", s)); }; A252737print(23); \\ Terms a(0) .. a(23) were computed with this program.
-
Scheme
(define (A252737 n) (if (zero? n) 1 (add A163511 (A000079 (- n 1)) (A000225 n))))
-
Scheme
(define (A252737 n) (if (zero? n) 1 (add (COMPOSE A005940 1+) (A000079 (- n 1)) (A000225 n)))) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i))))))) (define (COMPOSE . funlist) (cond ((null? funlist) (lambda (x) x)) (else (lambda (x) ((car funlist) ((apply COMPOSE (cdr funlist)) x))))))