cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247648 Numbers whose binary expansion begins and ends with 1 and does not contain two adjacent zeros.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 21, 23, 27, 29, 31, 43, 45, 47, 53, 55, 59, 61, 63, 85, 87, 91, 93, 95, 107, 109, 111, 117, 119, 123, 125, 127, 171, 173, 175, 181, 183, 187, 189, 191, 213, 215, 219, 221, 223, 235, 237, 239, 245, 247, 251, 253
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2014

Keywords

Comments

Decimal equivalents of A247647.
A265716(a(n)) = A265705(2*a(n),a(n)) = 2*a(n). - Reinhard Zumkeller, Dec 15 2015
The viabin numbers of the integer partitions having distinct parts (for the definition of viabin number see comment in A290253). For example, 109 is in the sequence because it is the viabin number of the integer partition [5,4,2]; 121 is not in the sequence because it is the viabin number of the integer partition [5,4,4]. - Emeric Deutsch, Aug 29 2017

Examples

			109 is in the sequence because its binary expansion is 1101101.
		

Crossrefs

Cf. A247875 (complement).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a247648 n = a247648_list !! (n-1)
    a247648_list = f $ singleton 1 where
       f s = x : f (insert (4 * x + 1) $ insert (2 * x + 1) s')
             where (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 25 2014
    
  • Maple
    vitopart := proc (n) local L, i, j, N, p, t: N := 2*n: L := ListTools:-Reverse(convert(N, base, 2)): j := 0: for i to nops(L) do if L[i] = 0 then j := j+1: p[j] := numboccur(L[1 .. i], 1) end if end do: sort([seq(p[t], t = 1 .. j)], `>=`) end proc: a := proc (n) if n = 1 then 1 elif `mod`(n, 2) = 0 then a((1/2)*n) elif `mod`(n, 2) = 1 and `mod`((1/2)*n-1/2, 2) = 0 then a((1/2)*n-1/2)+1 else a((1/2)*n-1/2) end if end proc: A := {}: for n to 254 do if a(n) = nops(vitopart(n)) then A := `union`(A, {n}) else end if end do: A; # program is based on my comment; the command vitopart(n) yields the integer partition having viabin number n. # Emeric Deutsch, Aug 29 2017
  • Mathematica
    Select[Range@ 256, And[First@ # == Last@ # == 1, NoneTrue[Map[Length, Select[Split[#], First@ # == 0 &]], # > 1 &]] &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Aug 29 2017 *)
  • PARI
    isok(k) = if (k%2, my(b=binary(k)); #select(x->(x==0), vector(#b-1, k, b[k]+b[k+1])) == 0); \\ Michel Marcus, Jun 15 2024
  • Python
    A247648_list = [n for n in range(1,10**5) if n % 2 and not '00' in bin(n)]
    # Chai Wah Wu, Sep 25 2014
    

A247649 Number of terms in expansion of f^n mod 2, where f = 1/x^2 + 1/x + 1 + x + x^2 mod 2.

Original entry on oeis.org

1, 5, 5, 7, 5, 17, 7, 19, 5, 25, 17, 19, 7, 31, 19, 25, 5, 25, 25, 35, 17, 61, 19, 71, 7, 35, 31, 41, 19, 71, 25, 77, 5, 25, 25, 35, 25, 85, 35, 95, 17, 85, 61, 71, 19, 91, 71, 77, 7, 35, 35, 49, 31, 107, 41, 121, 19, 95, 71, 85, 25, 113, 77, 103
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2014

Keywords

Comments

This is the number of cells that are ON after n generations in a one-dimensional cellular automaton defined by the odd-neighbor rule where the neighborhood consists of 5 contiguous cells.
a(n) is also the number of odd entries in row n of A035343. - Leon Rische, Feb 02 2023

Examples

			The first few generations are:
..........X..........
........XXXXX........
......X.X.X.X.X......
....XX..X.X.X..XX.... (f^3)
..X...X...X...X...X..
XXXX.XXX.XXX.XXX.XXXX
...
f^3 mod 2 = x^6 + x^5 + x^2 + 1/x^2 + 1/x^5 + 1/x^6 + 1 has 7 terms, so a(3) = 7.
From _Omar E. Pol_, Mar 02 2015: (Start)
Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
  1;
  5;
  5, 7;
  5,17, 7,19;
  5,25,17,19, 7,31,19,25;
  5,25,25,35,17,61,19,71, 7,35,31,41,19,71,25,77;
  5,25,25,35,25,85,35,95,17,85,61,71,19,91,71,77,7,35,35,49,31,107,41,121,19, ...
(End)
It follows from the Generalized Run Length Transform result mentioned in the comments that in each row the first quarter of the terms (and no more) are equal to 5 times the beginning of the sequence itself. It cannot be said that the rows converge (in any meaningful sense) to five times the sequence. - _N. J. A. Sloane_, Mar 03 2015
		

Crossrefs

Partial sums are in A255654.

Programs

  • Python
    import sympy
    from functools import reduce
    from operator import mul
    x = sympy.symbols('x')
    f = 1/x**2+1/x+1+x+x**2
    A247649_list, g = [1], 1
    for n in range(1,1001):
        s = [int(d,2) for d in bin(n)[2:].split('00') if d != '']
        g = (g*f).expand(modulus=2)
        if len(s) == 1:
            A247649_list.append(g.subs(x,1))
        else:
            A247649_list.append(reduce(mul,(A247649_list[d] for d in s)))
    # Chai Wah Wu, Sep 25 2014

Formula

The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 5*17 = 85. This is a generalization of the Run Length Transform.

A247647 Binary numbers that begin and end with 1 and do not contain two adjacent zeros.

Original entry on oeis.org

1, 11, 101, 111, 1011, 1101, 1111, 10101, 10111, 11011, 11101, 11111, 101011, 101101, 101111, 110101, 110111, 111011, 111101, 111111, 1010101, 1010111, 1011011, 1011101, 1011111, 1101011, 1101101, 1101111, 1110101, 1110111, 1111011, 1111101, 1111111, 10101011, 10101101, 10101111, 10110101, 10110111, 10111011, 10111101
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2014

Keywords

Crossrefs

See A247648 for the decimal equivalents.

Programs

  • Haskell
    a247647 = a007088 . a247648  -- Reinhard Zumkeller, Sep 25 2014
  • Mathematica
    With[{upto=500},Map[FromDigits,Select[IntegerString[Range[1,upto,2],2],StringFreeQ[#,"00"]&]]] (* Paolo Xausa, Dec 06 2023 *)
  • Python
    A247647_list = [int(bin(n)[2:]) for n in range(1,10**5) if n % 2 and not '00' in bin(n)]
    # Chai Wah Wu, Sep 25 2014
    

Formula

a(n) = A007088(A247648(n)).

A255490 The subsequence A247649(2^n-1).

Original entry on oeis.org

1, 5, 7, 19, 25, 77, 103, 307, 409, 1229, 1639, 4915, 6553, 19661, 26215, 78643, 104857, 314573, 419431, 1258291, 1677721, 5033165, 6710887, 20132659, 26843545, 80530637, 107374183, 322122547, 429496729, 1288490189, 1717986919, 5153960755
Offset: 0

Views

Author

N. J. A. Sloane, Mar 03 2015

Keywords

Comments

Note that A247649 is not the Run Length Transform of this sequence - compare A253085.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,4}, {1,5,7,19}, 40] (* Georg Fischer, Aug 18 2021 *)

Formula

G.f.: (1+5*x+4*x^2+4*x^3)/(1-3*x^2-4*x^4).
Showing 1-4 of 4 results.