cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253138 Number of ways to represent the n-th prime as the arithmetic mean of two semiprimes.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 4, 3, 3, 5, 7, 6, 5, 5, 8, 8, 7, 9, 7, 10, 10, 12, 11, 15, 12, 14, 14, 13, 11, 13, 15, 15, 14, 15, 20, 14, 15, 19, 20, 16, 17, 17, 17, 21, 24, 23, 24, 28, 23, 25, 24, 27, 25, 32, 29, 25, 21, 26, 31, 31, 29, 36, 32
Offset: 1

Views

Author

Michel Lagneau, Mar 23 2015

Keywords

Comments

Conjecture: a(n)>0 for n>5.
Note that a(n) = A241535(n) = A241536(n) = 0 for n=1,2 and 5. - Michel Marcus, Mar 26 2015
Among the a(n) decompositions of prime(n) into two semiprimes (prime(n)+ k)/2 and (prime(n)-k)/2, there is one where k is minimum with k = A241536(n) and there is one where k is maximum with k = prime(n) - A241535(n).

Examples

			a(12)=3 as prime(12) = 37 = (9+65)/2 = (25+49)/2 =(35+39)/2 where 9, 25, 35, 39, 49 and 65 are semiprime.
		

Crossrefs

Programs

  • Haskell
    a253138 n = sum $ map a064911 $
       takeWhile (> 0) $ map (2 * p -) $ dropWhile (< p) a001358_list
       where p = a000040 n
    -- Reinhard Zumkeller, Mar 27 2015
  • Maple
    with(numtheory):for n from 1 to 100 do:c:=0:p:=ithprime(n):for m from 1 to p-1 do:p1:=p-m:p2:=p+m:if bigomega(p1)=2 and bigomega(p2)=2 then c:=c+1:else fi:od:printf(`%d, `,c):od:
  • Mathematica
    Reap[For[n=1, n <= 100, n++, c=0; p = Prime[n]; For[m=1, m <= p-1, m++, p1 = p-m; p2 = p+m; If[PrimeOmega[p1] == 2 && PrimeOmega[p2] == 2 , c = c+1]]; Print[c]; Sow[c]]][[2, 1]] (* Jean-François Alcover, Mar 23 2015, translated from Maple *)