cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253216 Smallest of four primes in arithmetic progression with common difference 6 and digit sum prime.

Original entry on oeis.org

1091, 15791, 30091, 369991, 421691, 501191, 661091, 1101091, 1539991, 2042591, 2210291, 2542091, 2811191, 3351191, 3512291, 3864691, 4411391, 4675591, 5960791, 5992291, 5998691, 6884191, 6918391, 7516891, 8608591, 8697791, 9297091, 9622891, 9646291, 12013091
Offset: 1

Views

Author

K. D. Bajpai, Dec 29 2014

Keywords

Examples

			a (1) = 1091: 1091 + 6 = 1097; 1097 + 6 = 1103; 1103 + 6 = 1109; all four are prime. Their digit sums 1+0+9+1 = 11; 1+0+9+7 = 17; 1+1+0+3 = 5 and 1+1+0+9 = 11 are also prime.
a(2) = 15791: 15791 + 6 = 15797; 15797 + 6 = 15803; 15803 + 6 = 15809; all four are prime. Their digit sums 1+5+7+9+1 = 23, 1+5+7+9+7 = 29, 1+5+8+0+3 = 17 and 1+5+8+0+9 = 23 are also prime.
		

Crossrefs

Programs

  • Mathematica
    A253216 = {}; Do[d = 6; k = Prime[n]; k1 = k + d; k2 = k + 2d; k3 = k + 3d; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[Plus @@ IntegerDigits[k]] && PrimeQ[Plus @@ IntegerDigits[k1]] && PrimeQ[Plus @@ IntegerDigits[k2]] && PrimeQ[Plus @@ IntegerDigits[k3]], AppendTo[A253216, k]], {n, 1000000}]; A253216
    prQ[{a_,b_,c_,d_}]:=AllTrue[{b,c,d},PrimeQ]&&AllTrue[Total/@ (IntegerDigits/@ {a,b,c,d}),PrimeQ]; Select[#+{0,6,12,18}& /@Prime[Range[800000]],prQ][[All,1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 26 2018 *)
  • PARI
    for( n=1, 10^6, k=prime(n); k1=k+6; k2=k+12; k3=k+18; if(isprime(k1)&isprime(k2)&isprime(k3) &isprime(eval(Str(sumdigits(k)))) &isprime(eval(Str(sumdigits(k1)))) &isprime(eval(Str(sumdigits(k2)))) &isprime(eval(Str(sumdigits(k3)))), print1(k,", ")))

Extensions

Definition corrected by Harvey P. Dale, May 26 2018

A253232 Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.

Original entry on oeis.org

61, 83, 89, 593, 1399, 2063, 2287, 2351, 2441, 3491, 5081, 5171, 5479, 6599, 9497, 12073, 16561, 17569, 21377, 23099, 23189, 28573, 29063, 32143, 36293, 36497, 36587, 39569, 49279, 61291, 62383, 65449, 66373, 71167, 72379, 75347, 81457, 88591, 92377, 94261, 104369
Offset: 1

Views

Author

K. D. Bajpai, Dec 29 2014

Keywords

Comments

90 is the smallest common difference (d) to get a set of five consecutive primes in arithmetic progression {p, p+d, p+2d, p+3d, p+4d} having digit sums equal; for p < prime(10^5).

Examples

			a(1) = 61: 61+90 = 151; 151+90 = 241; 241+90 = 331; 331+90 = 421; all five are prime. Their digit sums 6+1 = 1+5+1 = 2+4+1 = 3+3+1 = 4+2+1 = 7 are all equal.
a(2) = 83: 83+90 = 173; 173+90 = 263; 263+90 = 353; 353+90 = 443; all five are prime. Their digit sums 8+3 = 1+7+3 = 2+6+3 = 3+5+3 = 4+4+3 = 11 are all equal.
		

Crossrefs

Programs

  • Mathematica
    A253232 = {}; Do[d = 90; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; k4 = k + 4 d; s = Plus @@ IntegerDigits[k]; s1 = Plus @@ IntegerDigits[k1]; s2 = Plus @@ IntegerDigits[k2]; s3 = Plus @@ IntegerDigits[k3]; s4 = Plus @@ IntegerDigits[k4]; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[k4] && s == s1 && s1 == s2 && s2 == s3 && s3 == s4, AppendTo[A253232, k]], {n, 50000}]; A253232
    cd90Q[p_]:=Module[{q=p+90,r=p+180,s=p+270,t=p+360},AllTrue[{p,q,r,s,t},PrimeQ] && Length[Union[Total/@(IntegerDigits/@{p,q,r,s,t})]]==1]; Select[ Prime[ Range[ 10000]],cd90Q] (* Harvey P. Dale, May 13 2022 *)

A277607 Smallest of four consecutive primes in arithmetic progression with common difference 42 and all digit sums prime.

Original entry on oeis.org

5, 47, 157, 227, 317, 337, 557, 2027, 3037, 3217, 5147, 6047, 7457, 12527, 13757, 14657, 20357, 21017, 23747, 32057, 35027, 47417, 57047, 84137, 115727, 125627, 127247, 136337, 147137, 149027, 212057, 219937, 225257, 230017, 240047, 242357, 264137, 284117, 304127
Offset: 1

Views

Author

K. D. Bajpai, Oct 31 2016

Keywords

Examples

			a(1) = 5: 5 + 42 = 47; 47 + 42 = 89; 89 + 42 = 131; all four are prime. Their digit sums 5, 4 + 7 = 11, 8 + 9 = 17 and 1 + 3 + 1 = 5 are also prime.
a(2) = 47: 47 + 42 = 89; 89 + 42 = 131; 131 + 42 = 173; all four are prime. Their digit sums  4 + 7 = 11, 8 + 9 = 17, 1 + 3 + 1 = 5 and 1 + 7 + 3 = 11 are also prime.
		

Crossrefs

Programs

  • Mathematica
    A277607 = {}; Do[d = 42; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[Plus @@ IntegerDigits[k]] && PrimeQ[Plus @@ IntegerDigits[k1]] && PrimeQ[Plus @@ IntegerDigits[k2]] && PrimeQ[Plus @@ IntegerDigits[k3]], AppendTo[A25, k]], {n, 30000}]; A277607
    FCPQ[n_] := Module[{a = n + 42, b = n + 84, c = n + 126}, AllTrue[{a, b, c}, PrimeQ] && AllTrue[Total /@ (IntegerDigits /@ {n, a, b, c}), PrimeQ]]; Select[Prime[Range[30000]], FCPQ]
Showing 1-3 of 3 results.