A253145 Triangular numbers (A000217) omitting the term 1.
0, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
Concatenation([0],List([1..50],n->(n+1)*(n+2)/2)); # Muniru A Asiru, Oct 31 2018
-
Mathematica
Prepend[Table[(n + 1) (n + 2)/2, {n, 49}], 0] (* Michael De Vlieger, Mar 23 2015 *)
-
PARI
a(n)=if(n,(n+1)*(n+2)/2,0) \\ Charles R Greathouse IV, Mar 23 2015
Formula
Inverse Akiyama-Tanigawa transform of (-1)^n*A062510(n).
a(n) = (n+1)*(n+2)/2 for n > 0. - Charles R Greathouse IV, Mar 23 2015
a(n) = A161680(n+2) for n >= 1. - Georg Fischer, Oct 30 2018
From Stefano Spezia, May 28 2025: (Start)
G.f.: x*(3 - 3*x + x^2)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 4*x + x^2)/2 - 1. (End)
Comments