A253198 a(n) = a(n-1) + a(n-2) - (-1)^(a(n-1) + a(n-2)) with a(0)=0, a(1)=1.
0, 1, 2, 4, 5, 10, 16, 25, 42, 68, 109, 178, 288, 465, 754, 1220, 1973, 3194, 5168, 8361, 13530, 21892, 35421, 57314, 92736, 150049, 242786, 392836, 635621, 1028458, 1664080, 2692537, 4356618, 7049156, 11405773, 18454930, 29860704, 48315633, 78176338, 126491972, 204668309, 331160282, 535828592
Offset: 0
Examples
For n=2, a(2) = 0 + 1 - (-1)^1 = 0 + 1 + 1 = 2. For n=3, a(3) = 1 + 2 - (-1)^3 = 1 + 2 + 1 = 4. For n=4, a(4) = 2 + 4 - (-1)^6 = 2 + 4 - 1 = 5.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- W. Puszkarz, A Note on Minimal Extensions of the Fibonacci Sequence, viXra:1503.0113, 2015.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Programs
-
Magma
[n le 2 select (n-1) else Self(n-1) + Self(n-2) - (-1)^(Self(n-1) + Self(n-2)): n in [1..50] ]; // Vincenzo Librandi, Mar 28 2015
-
Mathematica
RecurrenceTable[{a[n]==a[n-1]+a[n-2] -(-1)^(a[n-1]+a[n-2]), a[0]==0, a[1]==1}, a, {n, 0, 50}] LinearRecurrence[{1,1,1,-1,-1},{0,1,2,4,5},50] (* Harvey P. Dale, Mar 17 2019 *)
-
PARI
concat(0, Vec(-x*(2*x^3-x^2-x-1)/((x-1)*(x^2+x-1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Mar 28 2015
Formula
a(n) = a(n-1) + a(n-2) - (-1)^(a(n-1) + a(n-2)), a(0)=0, a(1)=1.
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) for n>4. - Colin Barker, Mar 28 2015
G.f.: -x*(2*x^3-x^2-x-1) / ((x-1)*(x^2+x-1)*(x^2+x+1)). - Colin Barker, Mar 28 2015
Comments