A253232 Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.
61, 83, 89, 593, 1399, 2063, 2287, 2351, 2441, 3491, 5081, 5171, 5479, 6599, 9497, 12073, 16561, 17569, 21377, 23099, 23189, 28573, 29063, 32143, 36293, 36497, 36587, 39569, 49279, 61291, 62383, 65449, 66373, 71167, 72379, 75347, 81457, 88591, 92377, 94261, 104369
Offset: 1
Examples
a(1) = 61: 61+90 = 151; 151+90 = 241; 241+90 = 331; 331+90 = 421; all five are prime. Their digit sums 6+1 = 1+5+1 = 2+4+1 = 3+3+1 = 4+2+1 = 7 are all equal. a(2) = 83: 83+90 = 173; 173+90 = 263; 263+90 = 353; 353+90 = 443; all five are prime. Their digit sums 8+3 = 1+7+3 = 2+6+3 = 3+5+3 = 4+4+3 = 11 are all equal.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A253232 = {}; Do[d = 90; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; k4 = k + 4 d; s = Plus @@ IntegerDigits[k]; s1 = Plus @@ IntegerDigits[k1]; s2 = Plus @@ IntegerDigits[k2]; s3 = Plus @@ IntegerDigits[k3]; s4 = Plus @@ IntegerDigits[k4]; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[k4] && s == s1 && s1 == s2 && s2 == s3 && s3 == s4, AppendTo[A253232, k]], {n, 50000}]; A253232 cd90Q[p_]:=Module[{q=p+90,r=p+180,s=p+270,t=p+360},AllTrue[{p,q,r,s,t},PrimeQ] && Length[Union[Total/@(IntegerDigits/@{p,q,r,s,t})]]==1]; Select[ Prime[ Range[ 10000]],cd90Q] (* Harvey P. Dale, May 13 2022 *)
Comments