cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253232 Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.

Original entry on oeis.org

61, 83, 89, 593, 1399, 2063, 2287, 2351, 2441, 3491, 5081, 5171, 5479, 6599, 9497, 12073, 16561, 17569, 21377, 23099, 23189, 28573, 29063, 32143, 36293, 36497, 36587, 39569, 49279, 61291, 62383, 65449, 66373, 71167, 72379, 75347, 81457, 88591, 92377, 94261, 104369
Offset: 1

Views

Author

K. D. Bajpai, Dec 29 2014

Keywords

Comments

90 is the smallest common difference (d) to get a set of five consecutive primes in arithmetic progression {p, p+d, p+2d, p+3d, p+4d} having digit sums equal; for p < prime(10^5).

Examples

			a(1) = 61: 61+90 = 151; 151+90 = 241; 241+90 = 331; 331+90 = 421; all five are prime. Their digit sums 6+1 = 1+5+1 = 2+4+1 = 3+3+1 = 4+2+1 = 7 are all equal.
a(2) = 83: 83+90 = 173; 173+90 = 263; 263+90 = 353; 353+90 = 443; all five are prime. Their digit sums 8+3 = 1+7+3 = 2+6+3 = 3+5+3 = 4+4+3 = 11 are all equal.
		

Crossrefs

Programs

  • Mathematica
    A253232 = {}; Do[d = 90; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; k4 = k + 4 d; s = Plus @@ IntegerDigits[k]; s1 = Plus @@ IntegerDigits[k1]; s2 = Plus @@ IntegerDigits[k2]; s3 = Plus @@ IntegerDigits[k3]; s4 = Plus @@ IntegerDigits[k4]; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[k4] && s == s1 && s1 == s2 && s2 == s3 && s3 == s4, AppendTo[A253232, k]], {n, 50000}]; A253232
    cd90Q[p_]:=Module[{q=p+90,r=p+180,s=p+270,t=p+360},AllTrue[{p,q,r,s,t},PrimeQ] && Length[Union[Total/@(IntegerDigits/@{p,q,r,s,t})]]==1]; Select[ Prime[ Range[ 10000]],cd90Q] (* Harvey P. Dale, May 13 2022 *)