A253283 Triangle read by rows: coefficients of the partial fraction decomposition of [d^n/dx^n] (x/(1-x))^n/n!.
1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 4, 30, 60, 35, 0, 5, 60, 210, 280, 126, 0, 6, 105, 560, 1260, 1260, 462, 0, 7, 168, 1260, 4200, 6930, 5544, 1716, 0, 8, 252, 2520, 11550, 27720, 36036, 24024, 6435, 0, 9, 360, 4620, 27720, 90090, 168168, 180180, 102960, 24310
Offset: 0
Examples
[1] [0, 1] [0, 2, 3] [0, 3, 12, 10] [0, 4, 30, 60, 35] [0, 5, 60, 210, 280, 126] [0, 6, 105, 560, 1260, 1260, 462] [0, 7, 168, 1260, 4200, 6930, 5544, 1716] . R_0(x) = 1/(x-1)^0. R_1(x) = 0/(x-1)^1 + 1/(x-1)^2. R_2(x) = 0/(x-1)^2 + 2/(x-1)^3 + 3/(x-1)^4. R_3(x) = 0/(x-1)^3 + 3/(x-1)^4 + 12/(x-1)^5 + 10/(x-1)^6. Then k!*[x^k] R_n(x) is A001286(k+2) and A001754(k+3) for n = 2, 3 respectively. . Seen as an array A(n, k) = binomial(n + k, k)*binomial(n + 2*k - 1, n + k): [0] 1, 1, 3, 10, 35, 126, 462, ... [1] 0, 2, 12, 60, 280, 1260, 5544, ... [2] 0, 3, 30, 210, 1260, 6930, 36036, ... [3] 0, 4, 60, 560, 4200, 27720, 168168, ... [4] 0, 5, 105, 1260, 11550, 90090, 630630, ... [5] 0, 6, 168, 2520, 27720, 252252, 2018016, ... [6] 0, 7, 252, 4620, 60060, 630630, 5717712, ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- F. Chapoton Enumerative Properties of Generalized Associahedra, Sém. Loth. Comb. B51b (2004).
- Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45.
- S. Fomin and A. Zelevinsky Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3.
- Yunlong Shen and Lixin Shen, Orthogonal Fourier-Mellin moments for invariant pattern recognition, J. Opt. Soc. Am. A 11 (6) (1994) p 1748-1757, eq. (6).
Crossrefs
Programs
-
Maple
T_row := proc(n) local egf, k, F, t; if n=0 then RETURN(1) fi; egf := (x/(1-x))^n/n!; t := diff(egf,[x$n]); F := convert(t,parfrac,x); # print(seq(k!*coeff(series(F,x,20),x,k),k=0..7)); # gives A000142, A001286, A001754, A001755, A001777, ... seq(coeff(F,(x-1)^(-k)),k=n..2*n) end: seq(print(T_row(n)),n=0..7); # 2nd version by R. J. Mathar, Dec 18 2016: A253283 := proc(n,k) binomial(n,k)*binomial(n+k-1,k-1) ; end proc:
-
Mathematica
Table[Binomial[n, k] Binomial[n + k - 1, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)
-
PARI
T(n,k) = binomial(n,k)*binomial(n+k-1,k-1); tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 29 2018
Formula
The exponential generating functions for the rows of the square array L(n,k) = ((n+k)!/n!)*C(n+k-1,n-1) (associated to the unsigned Lah numbers) are given by R_n(x) = Sum_{k=0..n} T(n,k)/(x-1)^(n+k).
T(n,k) = C(n,k)*C(n+k-1,k-1).
Sum_{k=0..n} T(n,k) = (-1)^n*hypergeom([-n,n],[1],2) = (-1)^n*A182626(n).
Row generating function: Sum_{k>=1} T(n,k)*z^k = z*n* 2F1(1-n,n+1 ; 2; -z). - R. J. Mathar, Dec 18 2016
From Peter Bala, Feb 22 2017: (Start)
G.f.: (1/2)*( 1 + (1 - t)/sqrt(1 - 2*(2*x + 1)*t + t^2) ) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n,x) = (1/2)*(LegendreP(n, 2*x + 1) - LegendreP(n-1, 2*x + 1)) for n >= 1.
The row polynomials are the black diamond product of the polynomials x^n and x^(n+1) (see Dukes and White 2016 for the definition of this product).
exp(Sum_{n >= 1} R(n,x)*t^n/n) = 1 + x*t + x*(1 + 2*x)*t^2 + x*(1 + 5*x + 5*x^2)*t^3 + ... is a g.f. for A033282, but with a different offset.
The polynomials P(n,x) := (-1)^n/n!*x^(2*n)*(d/dx)^n(1 + 1/x)^n begin 1, 3 + 2*x , 10 + 12*x + 3*x^2, ... and are the row polynomials for the row reverse of this triangle. (End)
Let Q(n, x) = Sum_{j=0..n} (-1)^(n - j)*A269944(n, j)*x^(2*j - 1) and P(x, y) = (LegendreP(x, 2*y + 1) - LegendreP(x-1, 2*y + 1)) / 2 (see Peter Bala above). Then n!*(n - 1)!*[y^n] P(x, y) = Q(n, x) for n >= 1. - Peter Luschny, Oct 31 2022
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 0} binomial(2*n-1, n)*(x*t)^n/(1 - t)^(2*n) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n, x) = [t^n] ( (1 - t)/(1 - (1 + x)*t) )^n.
It follows that for integer x, the sequence {R(n, x) : n >= 0} satisfies the Gauss congruences: R(n*p^r, x) == R(n*p^(r-1), x) (mod p^r) for all primes p and positive integers n and r.
R(n, -2) = (-1)^n * A002003(n) for n >= 1.
R(n, 3) = A299507(n). (End)
Comments