A253286 Square array read by upward antidiagonals, A(n,k) = Sum_{j=0..n} (n-j)!*C(n,n-j)* C(n-1,n-j)*k^j, for n>=0 and k>=0.
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 8, 3, 1, 0, 73, 44, 15, 4, 1, 0, 501, 304, 99, 24, 5, 1, 0, 4051, 2512, 801, 184, 35, 6, 1, 0, 37633, 24064, 7623, 1696, 305, 48, 7, 1, 0, 394353, 261536, 83079, 18144, 3145, 468, 63, 8, 1
Offset: 0
Examples
Square array starts, A(n,k): 1, 1, 1, 1, 1, 1, 1, ... A000012 0, 1, 2, 3, 4, 5, 6, ... A001477 0, 3, 8, 15, 24, 35, 48, ... A005563 0, 13, 44, 99, 184, 305, 468, ... A226514 0, 73, 304, 801, 1696, 3145, 5328, ... 0, 501, 2512, 7623, 18144, 37225, 68976, ... 0, 4051, 24064, 83079, 220096, 495475, 997056, ... A000007, A000262, A052897, A255806, ... Triangle starts, T(n, k) = A(n-k, k): 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 13, 8, 3, 1; 0, 73, 44, 15, 4, 1; 0, 501, 304, 99, 24, 5, 1;
Links
Crossrefs
Programs
-
Magma
[k eq n select 1 else k*Factorial(n-k-1)*Evaluate(LaguerrePolynomial(n-k-1, 1), -k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
-
Maple
L := (n, k) -> (n-k)!*binomial(n,n-k)*binomial(n-1,n-k): A := (n, k) -> add(L(n,j)*k^j, j=0..n): # Alternatively: # A := (n, k) -> `if`(n=0,1, simplify(k*n!*hypergeom([1-n],[2],-k))): for n from 0 to 6 do lprint(seq(A(n,k), k=0..6)) od;
-
Mathematica
A253286[n_, k_]:= If[k==n, 1, k*(n-k-1)!*LaguerreL[n-k-1, 1, -k]]; Table[A253286[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
-
PARI
{T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^j*binomial(n-1, j-1)/j!))} \\ Seiichi Manyama, Feb 03 2021
-
PARI
{T(n, k) = if(n<2, (k-1)*n+1, (2*n+k-2)*T(n-1, k)-(n-1)*(n-2)*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
-
Sage
flatten([[1 if k==n else k*factorial(n-k-1)*gen_laguerre(n-k-1, 1, -k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
Formula
A(n,k) = k*n!*hypergeom([1-n],[2],-k) for n>=1 and 1 for n=0.
Row sums of triangle, Sum_{k=0..n} A(n-k, k) = 1 + A256325(n).
From Seiichi Manyama, Feb 03 2021: (Start)
E.g.f. of column k: exp(k*x/(1-x)).
T(n,k) = (2*n+k-2) * T(n-1,k) - (n-1) * (n-2) * T(n-2, k) for n > 1. (End)
From G. C. Greubel, Feb 23 2021: (Start)
A(n, k) = k*(n-1)!*LaguerreL(n-1, 1, -k) with A(0, k) = 1.
T(n, k) = k*(n-k-1)!*LaguerreL(n-k-1, 1, -k) with T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 1 + Sum_{k=0..n-1} (n-k-1)*k!*LaguerreL(k, 1, k-n+1). (End)