A289192
A(n,k) = n! * Laguerre(n,-k); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 14, 34, 24, 1, 5, 23, 86, 209, 120, 1, 6, 34, 168, 648, 1546, 720, 1, 7, 47, 286, 1473, 5752, 13327, 5040, 1, 8, 62, 446, 2840, 14988, 58576, 130922, 40320, 1, 9, 79, 654, 4929, 32344, 173007, 671568, 1441729, 362880
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 2, 3, 4, 5, 6, ...
: 2, 7, 14, 23, 34, 47, ...
: 6, 34, 86, 168, 286, 446, ...
: 24, 209, 648, 1473, 2840, 4929, ...
: 120, 1546, 5752, 14988, 32344, 61870, ...
Columns k=0-10 give:
A000142,
A002720,
A087912,
A277382,
A289147,
A289211,
A289212,
A289213,
A289214,
A289215,
A289216.
-
A:= (n,k)-> n! * add(binomial(n, i)*k^i/i!, i=0..n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := n! * LaguerreL[n, -k];
Table[A[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)
-
{T(n, k) = if(n<2, k*n+1, (2*n+k-1)*T(n-1, k)-(n-1)^2*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
-
T(n, k) = n!*pollaguerre(n, 0, -k); \\ Michel Marcus, Feb 05 2021
-
from sympy import binomial, factorial as f
def A(n, k): return f(n)*sum(binomial(n, i)*k**i/f(i) for i in range(n + 1))
for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Jun 28 2017
A255806
Expansion of e.g.f.: exp(Sum_{k>=1} 3*x^k).
Original entry on oeis.org
1, 3, 15, 99, 801, 7623, 83079, 1017495, 13808097, 205374123, 3318673599, 57845821707, 1081091446785, 21553820597871, 456410531639799, 10225931132021247, 241609515712343361, 6002109578246918355, 156360266121378584943, 4261404847790207796147
Offset: 0
-
[n eq 0 select 1 else 3*Factorial(n-1)*Evaluate(LaguerrePolynomial(n-1, 1), -3): n in [0..25]]; // G. C. Greubel, Feb 24 2021
-
nmax=20; CoefficientList[Series[Exp[Sum[3*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
CoefficientList[Series[E^(3*x/(1-x)), {x, 0, 20}], x] * Range[0, 20]!
Table[If[n==0, 1, 3*(n-1)!*LaguerreL[n-1, 1, -3]], {n, 0, 25}] (* G. C. Greubel, Feb 24 2021 *)
-
my(x='x +O('x^50)); Vec(serlaplace(exp(3*x/(1-x)))) \\ G. C. Greubel, Feb 05 2017
-
[1 if n==0 else 3*factorial(n-1)*gen_laguerre(n-1, 1, -3) for n in (0..25)] # G. C. Greubel, Feb 24 2021
A293145
a(n) = n! * [x^n] exp(n*x/(1 - x)).
Original entry on oeis.org
1, 1, 8, 99, 1696, 37225, 997056, 31535371, 1150303232, 47538819729, 2195314048000, 112032721984051, 6261138045038592, 380309520560089081, 24946892219825709056, 1757549042234670166875, 132356128415391650676736, 10610067001068927596601889, 902057202129607760380428288
Offset: 0
-
[n eq 0 select 1 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 1), -n): n in [0..20]]; // G. C. Greubel, Feb 23 2021
-
Table[n! SeriesCoefficient[Exp[n x/(1 - x)], {x, 0, n}], {n, 0, 18}]
Table[n! SeriesCoefficient[Product[Exp[n x^k], {k, 1, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[Sum[n^k n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 18}]]
Join[{1}, Table[n n! Hypergeometric1F1[1 - n, 2, -n], {n, 1, 18}]]
Table[If[n==0, 1, n!*LaguerreL[n-1, 1, -n]], {n, 0, 20}] (* G. C. Greubel, Feb 23 2021 *)
-
{a(n) = if(n==0, 1, n!*sum(k=1, n, n^k*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021
-
a(n) = if (n, n! * pollaguerre(n-1, 1, -n), 1); \\ Michel Marcus, Feb 23 2021
-
[1 if n==0 else factorial(n)*gen_laguerre(n-1, 1, -n) for n in (0..20)] # G. C. Greubel, Feb 23 2021
A086915
Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
Original entry on oeis.org
2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
Offset: 1
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
-
[Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
A256325
a(n) = Sum_{k=0..n-1} (n-k)!*exp(-k/2)*M_{k-n,1/2}(k), where M is the Whittaker function.
Original entry on oeis.org
0, 0, 1, 5, 24, 136, 933, 7589, 71376, 760796, 9051353, 118784325, 1703388648, 26486926720, 443732646029, 7965563713781, 152504645563072, 3101366761047860, 66753627906345057, 1515914174890163541, 36218232449903567992, 908098606824551207384, 23839591584412453131765
Offset: 0
-
[n eq 0 select 0 else (&+[(n-k-1)*Factorial(k)*Evaluate( LaguerrePolynomial(k, 1), k-n+1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Feb 23 2021
-
a := n -> add(exp(-k/2)*WhittakerM(-(n-k),1/2,k)*(n-k)!,k=0..n-1):
seq(round(evalf(a(n),64)), n=0..22);
# Alternatively:
a := n -> add(k*(n-k)!*hypergeom([k-n+1],[2],-k),k=0..n-1):
seq(simplify(a(n)), n=0..22);
-
Table[Sum[(n-k-1)*k!*LaguerreL[k, 1, k-n+1], {k,0,n-1}], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
-
[sum( (n-k-1)*factorial(k)*gen_laguerre(k, 1, k-n+1) for k in (0..n-1) ) for n in (0..30)] # G. C. Greubel, Feb 23 2021
A341033
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 73, 361, 1009, 2161, 3961, ...
1, 501, 4361, 17341, 48081, 108101, ...
-
T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
-
{T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
-
{T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}
Showing 1-6 of 6 results.
Comments