cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A277373 a(n) = Sum_{k=0..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.

Original entry on oeis.org

1, 2, 14, 168, 2840, 61870, 1649232, 51988748, 1891712384, 78031713690, 3598075308800, 183396819358192, 10239159335648256, 621414669926828102, 40733145577028065280, 2867932866586451980500, 215859025837098699948032, 17295664826665032427023922, 1469838791737283957748596736
Offset: 0

Views

Author

Peter Luschny, Oct 12 2016

Keywords

Comments

Limit_{n -> infinity} (LaguerreL(n,-n)/BesselI(0,2*n))^(1/n) = exp(-2 + 1/phi) * phi^2 = 0.657347578792874..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
For m > 0, n!*LaguerreL(n, -m*n) ~ sqrt(1/2 + (m+2)/(2*sqrt(m*(m+4)))) * (2+m+sqrt(m*(m+4)))^n * exp(n*(sqrt(m*(m+4))-m-2)/2) * n^n / 2^n. - Vaclav Kotesovec, Oct 14 2016
For m > 4, (-1)^n * n! * LaguerreL(n, m*n) ~ sqrt(1/2 + (m-2)/(2*sqrt(m*(m-4)))) * exp((m - 2 - sqrt(m*(m-4)))*n/2) * ((m - 2 + sqrt(m*(m-4)))/2)^n * n^n. - Vaclav Kotesovec, Feb 20 2020

Crossrefs

Cf. A002720 (n!L(n,-1)), A087912 (n!L(n,-2)), A277382 (n!L(n,-3)), A277372 (n!L(n,-n)-n^n), A277423 (n!L(n,n)), A144084 (polynomials).
Cf. A277391 (n!L(n,-2*n)), A277392 (n!L(n,-3*n)), A277418 (n!L(n,-4*n)), A277419 (n!L(n,-5*n)), A277420 (n!L(n,-6*n)), A277421 (n!L(n,-7*n)), A277422 (n!L(n,-8*n)).
Main diagonal of A289192.

Programs

  • Magma
    [(&+[Binomial(n, n-k)*Binomial(n, k)*n^(n-k)*Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 16 2018
  • Maple
    A277373 := n -> n!*LaguerreL(n, -n): seq(simplify(A277373(n)), n=0..18);
    # second Maple program:
    a:= n-> n! * add(binomial(n, i)*n^i/i!, i=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 27 2017
  • Mathematica
    Table[n!*LaguerreL[n, -n], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!) \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -n); \\ Michel Marcus, Feb 05 2021
    
  • Sage
    @cached_function
    def L(n, x):
        if n == 0: return 1
        if n == 1: return 1 - x
        return (L(n-1,x) * (2*n-1-x) - L(n-2,x)*(n-1))/n
    A277373 = lambda n: factorial(n)*L(n, -n)
    print([A277373(n) for n in (0..20)])
    

Formula

a(n) = p(n,n) where p(n,x) = Sum_{k=0..n} binomial(n,n-k)*x^(n-k)*n!/(n-k)!. The coefficients of these polynomials are in A144084 (sorted by falling powers).
a(n) = n!*LaguerreL(n, -n).
a(n) = (-1)^n*KummerU(-n, 1, -n).
a(n) = n^n*hypergeom([-n, -n], [], 1/n) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * [x^n] exp(n*x/(1-x))/(1-x). - Alois P. Heinz, Jun 28 2017
a(n) = n!^2 * [x^n] exp(x) * BesselI(0,2*sqrt(n*x)). - Ilya Gutkovskiy, Jun 19 2022

A087912 Exponential generating function is exp(2*x/(1-x))/(1-x).

Original entry on oeis.org

1, 3, 14, 86, 648, 5752, 58576, 671568, 8546432, 119401856, 1815177984, 29808908032, 525586164736, 9898343691264, 198227905206272, 4204989697906688, 94163381359509504, 2219240984918720512, 54898699229094412288, 1422015190821016633344, 38484192401958599131136
Offset: 0

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Column k=2 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 16 2018
  • Maple
    a := proc(n) option remember: if n<1 then 1 else (2*n+1)*a(n-1) - (n-1)^2*a(n-2) fi end: 'a(n)'$n=0..17; # Zerinvary Lajos, Sep 26 2006; corrected by M. F. Hasler, Sep 30 2012
  • Mathematica
    Table[n! SeriesCoefficient[E^(2*x/(1-x))/(1-x), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, May 10 2013 *)
    Table[n!*LaguerreL[n, -2], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
  • PARI
    A087912(n)={n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,2^m*x^m/m!^2) ,n)} \\ Paul D. Hanna, Nov 18 2011
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(2*x/(1-x))/(1-x))) \\ Joerg Arndt, May 10 2013
    

Formula

E.g.f.: exp(2*x/(1-x))/(1-x). - M. F. Hasler, Sep 30 2012
a(n) = n!*LaguerreL(n, -2).
a(n) = Sum_{k=0..n} 2^k*(n-k)!*binomial(n, k)^2.
E.g.f.: exp(x) * Sum_{n>=0} 2^n*x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. [Paul D. Hanna, Nov 18 2011]
a(n) ~ n^(n+1/4)*exp(2*sqrt(2*n)-n-1)*2^(-3/4). - Vaclav Kotesovec, Sep 29 2012
Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(2*n))) = exp(-1). - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * A160615(n)/A160616(n). - Alois P. Heinz, Jun 28 2017
D-finite with recurrence: a(n) +(-2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Feb 21 2020

Extensions

Several minor edits by M. F. Hasler, Sep 30 2012

A277382 a(n) = n!*LaguerreL(n, -3).

Original entry on oeis.org

1, 4, 23, 168, 1473, 14988, 173007, 2228544, 31636449, 490102164, 8219695239, 148262469336, 2860241078817, 58736954622492, 1278727896354687, 29406849577341552, 712119108949808193, 18108134430393657636, 482306685868464422391, 13425231879291031821576
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2016

Keywords

Comments

For m > 0, n!*LaguerreL(n, -m) ~ exp(2*sqrt(m*n) - n - m/2) * n^(n + 1/4) / (sqrt(2)*m^(1/4)) * (1 + (3+24*m+4*m^2)/(48*sqrt(m*n))).

Crossrefs

Column k=3 of A289192.

Programs

  • Magma
    [Factorial(n)*((&+[Binomial(n,k)*(3^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 09 2018
  • Mathematica
    Table[n!*LaguerreL[n, -3], {n, 0, 20}]
    CoefficientList[Series[E^(3*x/(1-x))/(1-x), {x, 0, 20}], x] * Range[0, 20]!
    Table[Sum[Binomial[n, k]^2 * 3^k * (n-k)!, {k,0,n}], {n, 0, 20}]
  • PARI
    for(n=0,30, print1(n!*(sum(k=0,n, binomial(n,k)*(3^k/k!))), ", ")) \\ G. C. Greubel, May 09 2018
    

Formula

E.g.f.: exp(3*x/(1-x))/(1-x).
a(n) = Sum_{k=0..n} 3^k*(n-k)!*binomial(n, k)^2.
a(n) ~ exp(2*sqrt(3*n)-n-3/2) * n^(n+1/4) / (sqrt(2) * 3^(1/4)) * (1 + 37/(16*sqrt(3*n))).
D-finite with recurrence a(n) = 2*(n+1)*a(n-1) - (n-1)^2*a(n-2).
Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(3*n))) = exp(-3/2).
a(n) = n! * A160613(n)/A160614(n). - Alois P. Heinz, Jun 28 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 3^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289147 Number of (n+1) X (n+1) binary matrices M with at most one 1 in each of the first n rows and each of the first n columns and M[n+1,n+1] = 0.

Original entry on oeis.org

1, 5, 34, 286, 2840, 32344, 414160, 5876336, 91356544, 1542401920, 28075364096, 547643910400, 11389266525184, 251428006132736, 5869482147358720, 144413021660821504, 3733822274973040640, 101181690628832198656, 2867011297057247002624, 84764595415605494743040
Offset: 0

Views

Author

Alois P. Heinz, Jun 26 2017

Keywords

Comments

Number of marriage patterns between a labeled set X of n women and a labeled set Y of n men (all heterosexual): some couples can be formed where one partner is from X and the other from Y, some members of X and Y marry external (unlabeled) partners, and some do not marry.

Examples

			a(1) = 5:
[0 0]  [1 0]  [0 1]  [0 0]  [0 1]
[0 0]  [0 0]  [0 0]  [1 0]  [1 0] .
.
a(2) = 34:
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 0 1]
[0 0 0]  [0 1 0]  [1 0 0]  [1 1 0]  [0 0 0]  [0 1 0]  [1 0 0]
.
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]
[0 0 1]  [0 1 0]  [0 1 0]  [1 0 0]  [1 0 0]  [0 0 0]  [0 0 0]
[1 1 0]  [0 0 0]  [1 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [0 1 0]
.
[0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
[0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 1 0]
[1 0 0]  [1 1 0]  [0 0 0]  [0 1 0]  [1 0 0]  [1 1 0]  [0 0 0]
.
[0 0 1]  [0 0 1]  [0 0 1]  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 0]
[0 1 0]  [1 0 0]  [1 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]
[1 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [1 0 0]  [0 0 0]  [1 0 0]
.
[0 1 0]  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 0]
[1 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 1 0]
[0 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [0 1 0]  [0 0 0]  .
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          (2*n+3)*a(n-1)-(n-1)^2*a(n-2))
        end:
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> n-> n! * add(binomial(n, i)*4^i/i!, i=0..n):
    seq(a(n), n=0..25);
    # third Maple program:
    a:= n-> n!* simplify(LaguerreL(n, -4), 'LaguerreL'):
    seq(a(n), n=0..25);
  • Mathematica
    Table[n! LaguerreL[n, -4], {n, 0, 30}] (* Indranil Ghosh, Jul 06 2017 *)
  • Python
    from mpmath import *
    mp.dps=150
    l=chop(taylor(lambda x:exp(4*x/(1-x))/(1-x), 0, 31))
    print([int(fac(i)*l[i]) for i in range(len(l))]) # Indranil Ghosh, Jul 06 2017
    # or #
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -4))
    print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 06 2017

Formula

E.g.f.: exp(4*x/(1-x))/(1-x).
a(n) = Sum_{i=0..n} i! * (2^(n-i)*binomial(n,i))^2.
a(n) = Sum_{i=0..n} (n-i)! * 4^i * binomial(n,i)^2.
a(n) = n! * Sum_{i=0..n} 4^i/i! * binomial(n,i).
a(n) = (2*n+3)*a(n-1)-(n-1)^2*a(n-2) for n>=2, a(n) = 4*n+1 for n<2.
a(n) = n! * Laguerre(n,-4) = n! * A160611(n)/A160612(n).
a(n) ~ exp(-2 + 4*sqrt(n) - n) * n^(n + 1/4) / 2 * (1 + 163/(96*sqrt(n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 4^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289211 a(n) = n! * Laguerre(n,-5).

Original entry on oeis.org

1, 6, 47, 446, 4929, 61870, 866695, 13373190, 224995745, 4094022230, 80031878175, 1671426609550, 37116087808225, 872797202471550, 21656891639499575, 565266064058561750, 15476777687220818625, 443409439715399299750, 13263588837009155407375
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=5 of A289192.

Programs

  • Magma
    [(Factorial(n)*(&+[Binomial(n,k)*(5^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 09 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*5^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    [Table[n!*LaguerreL[n,-5], {n,0,50}]] (* G. C. Greubel, May 09 2018 *)
  • PARI
    for(n=0,30, print1(n!*sum(k=0,n, binomial(n,k)*(5^k/k!)), ", ")) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -5); \\ Michel Marcus, Feb 05 2021
    

Formula

E.g.f.: exp(5*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 5^i/i! * binomial(n,i).
a(n) = n! * A160609(n)/A160610(n).
a(n) ~ exp(-5/2 + 2*sqrt(5*n) - n) * n^(n + 1/4) / (sqrt(2)*5^(1/4)) * (1 + 223/(48*sqrt(5*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 5^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289212 a(n) = n! * Laguerre(n,-6).

Original entry on oeis.org

1, 7, 62, 654, 7944, 108696, 1649232, 27422352, 495057024, 9631281024, 200682406656, 4455296877312, 104921038236672, 2610989435003904, 68430995893131264, 1883330926998829056, 54286270223002140672, 1635031821385383247872, 51347572582353094508544
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=6 of A289192.

Programs

  • Maple
    a:= n-> n! * add(binomial(n, i)*6^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Table[n!*LaguerreL[n, -6], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(6*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -6); \\ Michel Marcus, Feb 05 2021
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -6))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
    

Formula

E.g.f.: exp(6*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 6^i/i! * binomial(n,i).
a(n) = n! * A160607(n)/A160608(n).
a(n) ~ exp(-3 + 2*sqrt(6*n) - n) * n^(n + 1/4) / (2^(3/4)*3^(1/4)) * (1 + 97/(16*sqrt(6*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 6^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289214 a(n) = n! * Laguerre(n,-8).

Original entry on oeis.org

1, 9, 98, 1238, 17688, 280888, 4894672, 92676144, 1891712384, 41361536384, 963532779264, 23806296960256, 621407739476992, 17078348640463872, 492724294444623872, 14883442560920164352, 469591293625846038528, 15443081743064125505536, 528340631093887891603456
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=8 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(8*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*8^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Table[n!*LaguerreL[n, -8], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(8*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -8); \\ Michel Marcus, Feb 05 2021
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -8))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
    

Formula

E.g.f.: exp(8*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 8^i/i! * binomial(n,i).
a(n) = n! * A160603(n)/A160604(n).
a(n) ~ exp(-4 + 4*sqrt(2*n) - n) * n^(n + 1/4) / 2^(5/4) * (1 + 451/(96*sqrt(2*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 8^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289215 a(n) = n! * Laguerre(n,-9).

Original entry on oeis.org

1, 10, 119, 1626, 24945, 422994, 7836255, 157169826, 3388099329, 78031713690, 1910451937671, 49510386761130, 1353167691897969, 38878205830928226, 1170930069982659375, 36875214316479123954, 1211549306913066598785, 41445016025330141416746
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=9 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(9*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*9^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Table[n!*LaguerreL[n, -9], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(9*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -9); \\ Michel Marcus, Feb 05 2021
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -9))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
    

Formula

E.g.f.: exp(9*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 9^i/i! * binomial(n,i).
a(n) = n! * A160601(n)/A160602(n).
a(n) ~ exp(-9/2 + 6*sqrt(n) - n) * n^(n + 1/4) / sqrt(6) * (1 + 181/(48*sqrt(n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 9^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A289216 a(n) = n! * Laguerre(n,-10).

Original entry on oeis.org

1, 11, 142, 2086, 34184, 616120, 12083920, 255749840, 5801633920, 140276126080, 3598075308800, 97512721964800, 2782552712473600, 83347512973644800, 2613606571616819200, 85594543750221568000, 2921314815145299968000, 103704333851191177216000
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=10 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(10*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*10^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Table[n!*LaguerreL[n, -10], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(10*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -10); \\ Michel Marcus, Feb 05 2021
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -10))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
    

Formula

E.g.f.: exp(10*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 10^i/i! * binomial(n,i).
a(n) = n! * A160587(n)/A160589(n).
a(n) ~ exp(-5 + 2*sqrt(10*n) - n) * n^(n + 1/4) / (2^(3/4)*5^(1/4)) * (1 + 643/(48*sqrt(10*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 10^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020
Showing 1-10 of 16 results. Next