A277373
a(n) = Sum_{k=0..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.
Original entry on oeis.org
1, 2, 14, 168, 2840, 61870, 1649232, 51988748, 1891712384, 78031713690, 3598075308800, 183396819358192, 10239159335648256, 621414669926828102, 40733145577028065280, 2867932866586451980500, 215859025837098699948032, 17295664826665032427023922, 1469838791737283957748596736
Offset: 0
Cf.
A002720 (n!L(n,-1)),
A087912 (n!L(n,-2)),
A277382 (n!L(n,-3)),
A277372 (n!L(n,-n)-n^n),
A277423 (n!L(n,n)),
A144084 (polynomials).
Cf.
A277391 (n!L(n,-2*n)),
A277392 (n!L(n,-3*n)),
A277418 (n!L(n,-4*n)),
A277419 (n!L(n,-5*n)),
A277420 (n!L(n,-6*n)),
A277421 (n!L(n,-7*n)),
A277422 (n!L(n,-8*n)).
-
[(&+[Binomial(n, n-k)*Binomial(n, k)*n^(n-k)*Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 16 2018
-
A277373 := n -> n!*LaguerreL(n, -n): seq(simplify(A277373(n)), n=0..18);
# second Maple program:
a:= n-> n! * add(binomial(n, i)*n^i/i!, i=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 27 2017
-
Table[n!*LaguerreL[n, -n], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
-
a(n) = sum(k=0,n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!) \\ Charles R Greathouse IV, Feb 07 2017
-
a(n) = n!*pollaguerre(n, 0, -n); \\ Michel Marcus, Feb 05 2021
-
@cached_function
def L(n, x):
if n == 0: return 1
if n == 1: return 1 - x
return (L(n-1,x) * (2*n-1-x) - L(n-2,x)*(n-1))/n
A277373 = lambda n: factorial(n)*L(n, -n)
print([A277373(n) for n in (0..20)])
A289192
A(n,k) = n! * Laguerre(n,-k); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 14, 34, 24, 1, 5, 23, 86, 209, 120, 1, 6, 34, 168, 648, 1546, 720, 1, 7, 47, 286, 1473, 5752, 13327, 5040, 1, 8, 62, 446, 2840, 14988, 58576, 130922, 40320, 1, 9, 79, 654, 4929, 32344, 173007, 671568, 1441729, 362880
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 2, 3, 4, 5, 6, ...
: 2, 7, 14, 23, 34, 47, ...
: 6, 34, 86, 168, 286, 446, ...
: 24, 209, 648, 1473, 2840, 4929, ...
: 120, 1546, 5752, 14988, 32344, 61870, ...
Columns k=0-10 give:
A000142,
A002720,
A087912,
A277382,
A289147,
A289211,
A289212,
A289213,
A289214,
A289215,
A289216.
-
A:= (n,k)-> n! * add(binomial(n, i)*k^i/i!, i=0..n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := n! * LaguerreL[n, -k];
Table[A[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)
-
{T(n, k) = if(n<2, k*n+1, (2*n+k-1)*T(n-1, k)-(n-1)^2*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
-
T(n, k) = n!*pollaguerre(n, 0, -k); \\ Michel Marcus, Feb 05 2021
-
from sympy import binomial, factorial as f
def A(n, k): return f(n)*sum(binomial(n, i)*k**i/f(i) for i in range(n + 1))
for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Jun 28 2017
A277423
a(n) = n!*LaguerreL(n, n).
Original entry on oeis.org
1, 0, -2, 6, 24, -380, 720, 31794, -361088, -2104056, 101548800, -612792290, -25534891008, 593660731404, 2831189530624, -361541172525750, 4481749181890560, 169464194149739536, -6805365045197340672, -9663483091971306186, 6883830206467440640000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*(-1)^k*n^k/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, May 16 2018
-
Table[n!*LaguerreL[n, n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
Table[n! * Hypergeometric1F1[-n, 1, n], {n, 0, 20}] (* Vaclav Kotesovec, Feb 20 2020 *)
-
a(n) = n!*sum(k=0,n, binomial(n,k)*(-1)^k*n^k/k!); \\ G. C. Greubel, May 16 2018
A277391
a(n) = n!*LaguerreL(n, -2*n).
Original entry on oeis.org
1, 3, 34, 654, 17688, 616120, 26252496, 1322624016, 76909665664, 5069558461824, 373529452588800, 30422117430022912, 2713911389090970624, 263171888496899625984, 27563036166079327578112, 3100736138961250867968000, 372888702864658105915244544
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*2^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -2*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k]*2^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*2^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277392
a(n) = n!*LaguerreL(n, -3*n).
Original entry on oeis.org
1, 4, 62, 1626, 59928, 2844120, 165100752, 11331597942, 897635712384, 80602042275756, 8090067511468800, 897561658361441106, 109072492644378442752, 14407931244544181001216, 2055559499598438969956352, 314997663481165477898736750, 51601245736595962597616222208
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*3^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -3*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k]*3^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*3^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277418
a(n) = n!*LaguerreL(n, -4*n).
Original entry on oeis.org
1, 5, 98, 3246, 151064, 9052120, 663449040, 57490690544, 5749754436992, 651830574374784, 82599621627948800, 11569798584488362240, 1775052172071446510592, 296026752508667034942464, 53320241823337034415908864, 10315767337287172256717568000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*4^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -4*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 4^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*4^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277419
a(n) = n!*LaguerreL(n, -5*n).
Original entry on oeis.org
1, 6, 142, 5676, 318744, 23046370, 2038090320, 213094791840, 25714702990720, 3517403388684030, 537798502938028800, 90890936781714193300, 16825134146527678233600, 3385560150770468257273050, 735772370353606135149107200, 171753027520961356975091493000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*5^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -5*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*5^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277420
a(n) = n!*LaguerreL(n, -6*n).
Original entry on oeis.org
1, 7, 194, 9078, 596760, 50508120, 5228520912, 639915545808, 90390815432064, 14472947716917120, 2590274418097708800, 512433683486806447872, 111036605823697437490176, 26153418409614396515976192, 6653213794092052464421939200, 1817951594633556391548903168000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*6^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -6*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 6^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*6^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277421
a(n) = n!*LaguerreL(n, -7*n).
Original entry on oeis.org
1, 8, 254, 13614, 1025048, 99368620, 11781698256, 1651548277946, 267197019684224, 49000715036948304, 10044513851042988800, 2275926588768085912582, 564838094735322988575744, 152378369304839730672573044, 44397985962782115253758973952
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*7^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -7*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 7^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*7^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277422
a(n) = n!*LaguerreL(n, -8*n).
Original entry on oeis.org
1, 9, 322, 19446, 1649688, 180184120, 24070390992, 3801662863152, 692979602529664, 143184960501077376, 33069665092749868800, 8442378658666161822976, 2360674573114695421197312, 717531421372546588398529536, 235551703250624390582942574592
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*(8)^k*n^k/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, May 16 2018
-
Table[n!*LaguerreL[n, -8*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 8^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0,n, binomial(n,k)*(8)^k*n^k/k!), ", ")) \\ G. C. Greubel, May 16 2018
Showing 1-10 of 17 results.
Comments