cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082579 Expansion of e.g.f.: exp( x/(1-x)^2 ).

Original entry on oeis.org

1, 1, 5, 31, 241, 2261, 24781, 309835, 4342241, 67308841, 1141960501, 21026890391, 417264626065, 8871853115581, 201100863674621, 4838817223845571, 123128720142540481, 3302478863343928145, 93091427773284348901, 2750635764338982054031, 84994418675445218025521
Offset: 0

Views

Author

Emanuele Munarini, May 07 2003

Keywords

Comments

Old name: A binomial sum.
a(n) is the number of ways that n people can form any number of lines and then designate one person in each line. Equivalently, number of ways to linearly arrange the elements in each block of a set partition, then underline one element in each block summed over all set partitions of {1,2,...,n}. a(2) = 5: [1'][2'], [1',2], [1,2'], [2',1], [2,1']. - Geoffrey Critzer, Nov 04 2012
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018

Crossrefs

Programs

  • Magma
    A082579:= func< n | n eq 0 select 1 else (&+[Factorial(n)*Binomial(n+k-1, n-k)/Factorial(k): k in [1..n]]) >;
    [A082579(n): n in [0..25]]; // G. C. Greubel, Feb 23 2021
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)^2],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 04 2012 *)
    nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)
    Table[If[n==0, 1, n*n!*HypergeometricPFQ[{1-n, n+1}, {3/2, 2}, -1/4]], {n, 0, 25}] (* G. C. Greubel, Feb 23 2021 *)
  • Maxima
    a(n):=n!*sum(binomial(n+k-1,2*k-1)/k!,k,1,n); /* Vladimir Kruchinin, Apr 21 2011 */
    
  • PARI
    my(x='x+O('x^33));
    Vec(serlaplace(exp( x/(1-x)^2 )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • Sage
    [1 if n==0 else factorial(n)*sum( binomial(n+k-1, n-k)/factorial(k) for k in (1..n)) for n in (0..25)] # G. C. Greubel, Feb 23 2021
    

Formula

a(n) = n!*Sum_{k=0..n} binomial(n+k-1, 2*k-1)/k!.
Recurrence: a(n+3) - (3*n+7)*a(n+2) + (n+2)*(3*n+2)*a(n+1) - (n+2)*(n+1)*n*a(n) = 0.
E.g.f.: exp( x/( 1 - x )^2 ).
Special values of the hypergeometric function 2F2: a(n)=n!*n*hypergeom([n+1, -n+1], [3/2, 2], -1/4), n >= 1. - Karol A. Penson, Jan 29 2004
a(n) ~ 2^(1/6)*n^(n-1/6)*exp(-1/12 + 3*(n/2)^(2/3) - n)/sqrt(3). - Vaclav Kotesovec, Jun 26 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/( 1 - x/(x + (1-x)^2*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
E.g.f.: exp(Sum_{k>=1} k*x^k). - Vaclav Kotesovec, Mar 07 2015
a(n) = n!*y(n), with y(0) = 1, y(n) = (Sum_{k=0..n-1} (n-k)^2*y(k))/n. - Benedict W. J. Irwin, Jun 02 2016
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434). - Ilya Gutkovskiy, May 25 2019
a(n) = n*n!*Hypergeometric2F2([1-n, n+1], [3/2, 2], -1/4) with a(0) = 1. - G. C. Greubel, Feb 23 2021

A052897 Expansion of e.g.f.: exp(2*x/(1-x)).

Original entry on oeis.org

1, 2, 8, 44, 304, 2512, 24064, 261536, 3173888, 42483968, 621159424, 9841950208, 167879268352, 3065723549696, 59651093528576, 1231571119812608, 26883546193002496, 618463501807058944
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Row sums of A059110.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1 - x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2018
    
  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -2): n in [0..25]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    L := proc(n,a,x) if n=0 then 1 elif n=1 then a+1-x else (2*n+a-1-x)/n*L(n-1,a,x) - (n+a-1)/n*L(n-2,a,x) fi end: A052897 := n -> n!*L(n,-1,-2): seq(A052897(n),n=0..17); # Peter Luschny, Nov 20 2011
    spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Range[0, 19]! CoefficientList[ Series[E^(2*x/(1 - x)), {x, 0, 19}], x] (* Zerinvary Lajos, Mar 21 2007 *)
    Table[n!*LaguerreL[n, -1, -2], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    a=Vec(exp(2*x/(1-x)));for(n=2,#a-1,a[n+1]*=n!);a \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [factorial(n)*gen_laguerre(n, -1, -2) for n in (0..25)] # G. C. Greubel, Feb 23 2021

Formula

E.g.f.: exp(2*x/(1-x)). - Vladeta Jovovic, Jan 04 2001
Recurrence: {a(0)=1, a(1)=2, (n^2+n)*a(n) + (-4-2*n)*a(n+1) + a(n+2)}.
LAH transform of A000079: a(n) = Sum_{k=0..n} 2^k*n!/k!*binomial(n-1, k-1). - Vladeta Jovovic, Oct 17 2003
a(n) = n!*L(n,-1,-2). - Karol A. Penson, Oct 16 2006 [Here L(n,a,x) is the n-th generalized Laguerre polynomial with parameter a, evaluated at x. L(n,a,x) is 1 if n=0, a+1-x if n=1 and otherwise (2*n+a-1-x)/n*L(n-1,a,x)-(n+a-1)/n*L(n-2,a,x). - Peter Luschny, Nov 20 2011]
a(n) ~ 2^(-1/4)*exp(2*sqrt(2*n)-n-1)*n^(n-1/4) * (1 + 7/(48*sqrt(2*n))). - Vaclav Kotesovec, Oct 09 2012, extended Dec 01 2021
E.g.f.: 1 + 2*x/((1-x)*T(0) - x), where T(k) = 4*k+1 + x^2/((4*k+3)*(1-x)^2 + x^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2013
E.g.f.: exp(Sum_{k>=1} 2*x^k). - Vaclav Kotesovec, Mar 07 2015
a(n) = Sum_{k=0..n} binomial(n,k)*l(k)*l(n-k), where l(m) = A000262(m). - Emanuele Munarini, Aug 31 2017

Extensions

New name using e.g.f., Vaclav Kotesovec, Feb 25 2014

A253286 Square array read by upward antidiagonals, A(n,k) = Sum_{j=0..n} (n-j)!*C(n,n-j)* C(n-1,n-j)*k^j, for n>=0 and k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 8, 3, 1, 0, 73, 44, 15, 4, 1, 0, 501, 304, 99, 24, 5, 1, 0, 4051, 2512, 801, 184, 35, 6, 1, 0, 37633, 24064, 7623, 1696, 305, 48, 7, 1, 0, 394353, 261536, 83079, 18144, 3145, 468, 63, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 24 2015

Keywords

Examples

			Square array starts, A(n,k):
      1,       1,       1,       1,      1,      1,      1, ...  A000012
      0,       1,       2,       3,      4,      5,      6, ...  A001477
      0,       3,       8,      15,     24,     35,     48, ...  A005563
      0,      13,      44,      99,    184,    305,    468, ...  A226514
      0,      73,     304,     801,   1696,   3145,   5328, ...
      0,     501,    2512,    7623,  18144,  37225,  68976, ...
      0,    4051,   24064,   83079, 220096, 495475, 997056, ...
A000007, A000262, A052897, A255806, ...
Triangle starts, T(n, k) = A(n-k, k):
  1;
  0,   1;
  0,   1,   1;
  0,   3,   2,  1;
  0,  13,   8,  3,  1;
  0,  73,  44, 15,  4, 1;
  0, 501, 304, 99, 24, 5, 1;
		

Crossrefs

Main diagonal gives A293145.

Programs

  • Magma
    [k eq n select 1 else k*Factorial(n-k-1)*Evaluate(LaguerrePolynomial(n-k-1, 1), -k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
  • Maple
    L := (n, k) -> (n-k)!*binomial(n,n-k)*binomial(n-1,n-k):
    A := (n, k) -> add(L(n,j)*k^j, j=0..n):
    # Alternatively:
    # A := (n, k) -> `if`(n=0,1, simplify(k*n!*hypergeom([1-n],[2],-k))):
    for n from 0 to 6 do lprint(seq(A(n,k), k=0..6)) od;
  • Mathematica
    A253286[n_, k_]:= If[k==n, 1, k*(n-k-1)!*LaguerreL[n-k-1, 1, -k]];
    Table[A253286[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^j*binomial(n-1, j-1)/j!))} \\ Seiichi Manyama, Feb 03 2021
    
  • PARI
    {T(n, k) = if(n<2, (k-1)*n+1, (2*n+k-2)*T(n-1, k)-(n-1)*(n-2)*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
    
  • Sage
    flatten([[1 if k==n else k*factorial(n-k-1)*gen_laguerre(n-k-1, 1, -k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
    

Formula

A(n,k) = k*n!*hypergeom([1-n],[2],-k) for n>=1 and 1 for n=0.
Row sums of triangle, Sum_{k=0..n} A(n-k, k) = 1 + A256325(n).
From Seiichi Manyama, Feb 03 2021: (Start)
E.g.f. of column k: exp(k*x/(1-x)).
T(n,k) = (2*n+k-2) * T(n-1,k) - (n-1) * (n-2) * T(n-2, k) for n > 1. (End)
From G. C. Greubel, Feb 23 2021: (Start)
A(n, k) = k*(n-1)!*LaguerreL(n-1, 1, -k) with A(0, k) = 1.
T(n, k) = k*(n-k-1)!*LaguerreL(n-k-1, 1, -k) with T(n, n) = 1.
T(n, 2) = A052897(n) = A086915(n)/2.
Sum_{k=0..n} T(n, k) = 1 + Sum_{k=0..n-1} (n-k-1)*k!*LaguerreL(k, 1, k-n+1). (End)

A293145 a(n) = n! * [x^n] exp(n*x/(1 - x)).

Original entry on oeis.org

1, 1, 8, 99, 1696, 37225, 997056, 31535371, 1150303232, 47538819729, 2195314048000, 112032721984051, 6261138045038592, 380309520560089081, 24946892219825709056, 1757549042234670166875, 132356128415391650676736, 10610067001068927596601889, 902057202129607760380428288
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2017

Keywords

Crossrefs

Main diagonal of A253286.

Programs

  • Magma
    [n eq 0 select 1 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 1), -n): n in [0..20]]; // G. C. Greubel, Feb 23 2021
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x/(1 - x)], {x, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[Product[Exp[n x^k], {k, 1, n}], {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[Sum[n^k n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 18}]]
    Join[{1}, Table[n n! Hypergeometric1F1[1 - n, 2, -n], {n, 1, 18}]]
    Table[If[n==0, 1, n!*LaguerreL[n-1, 1, -n]], {n, 0, 20}] (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    {a(n) = if(n==0, 1, n!*sum(k=1, n, n^k*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021
    
  • PARI
    a(n) = if (n, n! * pollaguerre(n-1, 1, -n), 1); \\ Michel Marcus, Feb 23 2021
    
  • Sage
    [1 if n==0 else factorial(n)*gen_laguerre(n-1, 1, -n) for n in (0..20)] # G. C. Greubel, Feb 23 2021
    

Formula

a(n) = n! * [x^n] Product_{k>=1} exp(n*x^k).
a(n) ~ exp(n/phi - n) * phi^(2*n) * n^n / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 01 2017
a(n) = n! * Sum_{k=1..n} n^k * binomial(n-1,k-1)/k! for n > 0. - Seiichi Manyama, Feb 03 2021
a(n) = n! * LaguerreL(n-1, 1, -n) with a(0) = 1. - G. C. Greubel, Feb 23 2021
Showing 1-4 of 4 results.