cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A253562 Inverse permutation to A253561: a(n) = A252752(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 8, 5, 30, 7, 6, 17, 122, 12, 498, 68, 38, 11, 2018, 9, 8130, 47, 155, 278, 32642, 23, 13, 1130, 10, 192, 130818, 107, 523778, 16, 632, 4562, 353, 18, 2096130, 18338, 2558, 93, 8386562, 437, 33550338, 782, 302, 73538, 134209538, 57, 39, 24, 10298, 3162, 536854530, 14, 1433, 380, 41330, 294530, 2147450882, 212, 8589869058, 1178882, 1227, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A253561.

Programs

Formula

a(n) = A252752(A122111(n)).

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A253563 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 9, 5, 16, 12, 18, 10, 27, 15, 25, 7, 32, 24, 36, 20, 54, 30, 50, 14, 81, 45, 75, 21, 125, 35, 49, 11, 64, 48, 72, 40, 108, 60, 100, 28, 162, 90, 150, 42, 250, 70, 98, 22, 243, 135, 225, 63, 375, 105, 147, 33, 625, 175, 245, 55, 343, 77, 121, 13, 128, 96, 144, 80, 216, 120, 200, 56, 324, 180, 300, 84, 500, 140, 196, 44
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253560 to the parent, and each child to the right is obtained by applying A253550 to the parent:
1
|
...................2...................
4 3
8......../ \........6 9......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 12 18 10 27 15 25 7
32 24 36 20 54 30 50 14 81 45 75 21 125 35 49 11
etc.
Sequence A253565 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) tells distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always larger than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
a(n) (n>=1) can be obtained by the composition of a bijection between {1,2,3,4,...} and the set of integer partitions and a bijection between the set of integer partitions and {2,3,4,...}. Explanation on the example n=10. Write 2*n = 20 as a binary number: 10100. Consider a Ferrers board whose southeast border is obtained by replacing each 1 by an east step and each 0 by a north step. We obtain the Ferrers board of the partition p = (2,2,1). Finally, a(10) = 2'*2'*1', where m' = m-th prime. Thus, a(10)= 3*3*2 = 18. - Emeric Deutsch, Sep 17 2016

Crossrefs

Inverse: A253564.
Cf. A252737 (row sums), A252738 (row products).

Programs

  • Maple
    a:= proc(n) local m; m:= n; [0]; while m>0 do `if`(1=
          irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od:
          `if`(n=0, 1, mul(ithprime(i), i=%))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 23 2017
  • Mathematica
    p[n_] := p[n] = FactorInteger[n][[-1, 1]];
    b[n_] := n p[n];
    c[1] = 1; c[n_] := (n/p[n]) NextPrime[p[n]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], c[a[(n-1)/2]]];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 15 2021 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).
As a composition of other permutations:
a(n) = A122111(A005940(n+1)).
a(n) = A253565(A054429(n)).
Other identities and observations. For all n >= 0:
A002110(n) = a(A002450(n)). [Primorials occur at positions (4^n - 1)/3.]
For all n >= 1: a(2n) - a(2n+1) > 0. [See the comment above.]

A253560 Multiply n by its largest prime factor: a(n) = A006530(n) * n.

Original entry on oeis.org

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]

A253568 Even bisection of A122111: a(n) = A122111(2*n).

Original entry on oeis.org

2, 3, 6, 5, 12, 10, 24, 7, 15, 20, 48, 14, 96, 40, 30, 11, 192, 21, 384, 28, 60, 80, 768, 22, 45, 160, 35, 56, 1536, 42, 3072, 13, 120, 320, 90, 33, 6144, 640, 240, 44, 12288, 84, 24576, 112, 70, 1280, 49152, 26, 135, 63, 480, 224, 98304, 55, 180, 88, 960, 2560, 196608, 66, 393216, 5120, 140, 17, 360, 168, 786432, 448, 1920, 126, 1572864, 39
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2015

Keywords

Crossrefs

Even bisection of A122111.
Topmost row of A253561.
Permutation of A102750.

Programs

Formula

a(n) = A122111(2*n).
Other identities. For all n >= 1:
A244982(n) = A243285(a(n)).
Showing 1-5 of 5 results.