cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253569 Composite numbers n = p_i * p_j * p_k * ... * p_u, p_i <= p_j <= p_k <= ... <= p_u, where each successive prime factor (when sorted into a nondecreasing order) is greater than the square of the previous: (p_i)^2 < p_j, (p_j)^2 < p_k, etc.

Original entry on oeis.org

10, 14, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 118, 122, 123, 129, 134, 141, 142, 145, 146, 155, 158, 159, 166, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 215, 218, 219, 226, 235, 237, 249, 254, 262, 265, 267, 274, 278, 290
Offset: 1

Views

Author

Keywords

Comments

Numbers n = A020639(n) * A014673(n) * A054576(n), for which A020639(n)^2 < A014673(n) and either A054576(n) = 1 or A032742(n) satisfies the same condition (is the term of this sequence).

Examples

			290 = 2*5*29 is a member, because 2^2 < 5 and 5^2 < 29.
		

Crossrefs

Complement: A253567.
Subsequence of A002808, A005117, A088381, A251727, A245729 and A253785.
A138511 is a subsequence, from which this sequence differs for the first time at n=60, where A138511(60) = 291, while here a(60) = 290.

Programs

  • Haskell
    a253569 n = a253569_list !! (n-1)
    a253569_list = filter f [1..] where
                        f x = (p ^ 2 < a020639 q) && (a010051' q == 1 || f q)
                              where q = div x p; p = a020639 x
    -- Antti Karttunen after Reinhard Zumkeller's code for A138511, Jan 09 2015
    a253569 n = a253569_list !! (n-1)
    a253569_list = filter (not . f''') a002808_list where
       f''' x = p ^ 2 > a020639 q || (a010051 q == 0 && f''' q)
                where q = div x p; p = a020639 x
    -- Reinhard Zumkeller, Jan 12 2015
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A253569 (MATCHING-POS 1 1 (lambda (n) (and (> (A001222 n) 1) (numbers-sparsely-distributed? (ifactor n))))))
    (define (numbers-sparsely-distributed? lista) (cond ((null? lista) #t) ((null? (cdr lista)) #t) ((> (A000290 (car lista)) (cadr lista)) #f) (else (numbers-sparsely-distributed? (cdr lista)))))
    ;; Antti Karttunen, Jan 16 2015
  • Mathematica
    cnQ[n_]:=CompositeQ[n]&&Union[Boole[#[[2]]>#[[1]]^2&/@Partition[Flatten[Table[ #[[1]], #[[2]]]&/@FactorInteger[n]],2,1]]]=={1}; Select[Range[300],cnQ] (* Harvey P. Dale, Jul 10 2023 *)