cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253636 Second partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 258, 7076, 79430, 542409, 2685004, 10592400, 35277012, 103008345, 270739678, 652829892, 1464901802, 3092704433, 6196296120, 11862778432, 21824228040, 38761435089, 66718602714, 111659333380, 182200064046, 290563654073, 453803117636, 695353566480, 1046979329500
Offset: 1

Views

Author

Luciano Ancora, Jan 07 2015

Keywords

Comments

The general formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m)-F(m+1), where F(m) are the m-th Faulhaber’s formulas.

Crossrefs

Programs

  • GAP
    List([1..30], n-> n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3)/180); # G. C. Greubel, Aug 28 2019
  • Magma
    [n*(n+1)^2*(n+2)*(2*n^6+12*n^5+17*n^4-12*n^3-19*n^2+18*n-3)/180: n in [1..25]]; // Bruno Berselli, Jan 08 2015
    
  • Maple
    seq(n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3))/180, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(n+1)^2(n+2)(2n^6 +12n^5 +17n^4 -12n^3 -19n^2 +18n -3)/180, {n,30}] (* Bruno Berselli, Jan 08 2015 *)
    Nest[Accumulate,Range[30]^8,2] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,258,7076,79430,542409,2685004,10592400, 35277012, 103008345,270739678,652829892},30] (* Harvey P. Dale, Jul 02 2017 *)
  • PARI
    a(n)=(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 \\ Charles R Greathouse IV, Sep 08 2015
    
  • Sage
    [(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 for n in [1..24]] # Tom Edgar, Jan 07 2015
    

Formula

a(n) = (2*n^10 + 20*n^9 + 75*n^8 + 120*n^7 + 42*n^6 - 84*n^5 - 50*n^4 + 40*n^3 + 21*n^2 - 6*n)/180.
a(n) = 2*a(n-1) - a(n-2) + n^8. - Robert Israel, Jan 07 2015
G.f.: x*(1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6) / (1 - x)^11. - Bruno Berselli, Jan 08 2015