cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253707 Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).

Original entry on oeis.org

17, 98, 291, 644, 1205, 2022, 3143, 4616, 6489, 8810, 11627, 14988, 18941, 23534, 28815, 34832, 41633, 49266, 57779, 67220, 77637, 89078, 101591, 115224, 130025, 146042, 163323, 181916, 201869, 223230, 246047, 270368, 296241, 323714, 352835, 383652, 416213
Offset: 1

Views

Author

Vladimir Pletser, Jan 09 2015

Keywords

Comments

Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754).
To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence), and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
		

Crossrefs

Programs

  • Magma
    [n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
  • Mathematica
    f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *)
    LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* Harvey P. Dale, Jul 31 2018 *)
  • PARI
    Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
    

Formula

a(n) = n(8n(n+1)+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Jan 10 2015
G.f.: x*(x^2+30*x+17) / (x-1)^4. - Colin Barker, Jan 10 2015