A253712 Second partial sums of 12th powers (A008456).
1, 4098, 539636, 17852390, 279305769, 2717541484, 18997064400, 103996064052, 471424600185, 1838853136318, 6344710049172, 19766667410282, 56486709893873, 149900664752760, 373060957502272, 877696226962440, 1964953733652369, 4209042621768474, 8666446428950740, 17219850236133006, 33129081554701913, 61893315504320036
Offset: 1
Keywords
Links
- Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
- Luciano Ancora, Second partial sums of the m-th powers
Programs
-
Magma
[(n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460: n in [1..30]]; // Vincenzo Librandi, Jan 19 2015
-
Mathematica
RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^12, a[1] == 1, a[2] == 4098}, a, {n, 1, 25}] (* Bruno Berselli, Jan 19 2015 *) Table[(n + 1)^2 n (n + 2) (30 n^10 + 300 n^9 + 925 n^8 + 200 n^7 - 3022 n^6 - 772 n^5 + 7073 n^4 - 1228 n^3 - 7888 n^2 + 5528 n - 691)/5460, {n, 1, 25}] (* Vincenzo Librandi, Jan 19 2015 *) Nest[Accumulate[#]&,Range[30]^12,2] (* Harvey P. Dale, Aug 17 2020 *)
Formula
a(n) = (n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460.
a(n) = 2*a(n-1)-a(n-2)+n^12.
G.f.: x*(1 + 4083*x + 478271*x^2 + 10187685*x^3 + 66318474*x^4 + 162512286*x^5 + 162512286*x^6 + 66318474*x^7 + 10187685*x^8 + 478271*x^9 + 4083*x^10 + x^11)/(1-x)^15. - Vincenzo Librandi, Jan 19 2015
Extensions
a(22) corrected by Vincenzo Librandi, Jan 19 2015
Comments