A253717 Primes equal to their partial cyclical digital sum numbers.
2, 3, 5, 7, 11, 13, 17, 31, 53, 71, 101, 131, 157, 173, 181, 197, 211, 283, 431, 439, 457, 461, 487, 509, 571, 601, 643, 727, 911, 929, 1021, 1031, 1033, 1051, 1093, 1151, 1163, 1171, 1201, 1231, 1249, 1259, 1301, 1303, 1327, 1373, 1399, 1429, 1451, 1453, 1493
Offset: 1
Examples
Prime(37) = 157 = (1+5+7)*12 + 1. Prime(40) = 173 = (1+7+3)*15 + 1+7. Prime(42) = 181 = (1+8+1)*18 + 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a253717 n = a253717_list !! (n-1) a253717_list = filter ((== 1) . a010051') a106039_list -- Reinhard Zumkeller, May 07 2015
-
Mathematica
terms = {}; (Do[p = Prime[n]; iD = IntegerDigits[p]; iD[[0]] = 0; a = Apply[Plus, iD]; pf = p - Mod[p, Floor[p/a]*a]; (Do[pf = pf + Apply[Plus, iD[[i]]]; If[pf == p, AppendTo[terms, pf]], {i, 0, IntegerLength[Prime[n]]}]), {n, 1, 1000}]); Union[terms]
-
PARI
isok(n) = {my(v = divrem(n, sumdigits(n))[2]); if (!v, return (1)); d = digits(n); for (i=1, #d, v -= d[i]; if (!v, return (1));); return (0);} lista(nn) = forprime (n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, May 03 2015
Comments