cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253824 Numbers m = concat(s,t) such that m = sigma(s) * sigma(t), where sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

540, 2352, 28224, 82890, 737856, 1524096, 1531152, 3429216, 17062920, 22264200, 23268600, 49447728, 104941200, 162496048, 197499456, 267450144, 502334784, 619672032, 2347826040, 2942021520, 4045874976, 4302305280, 9876226752, 22712348160, 24705882348, 33114541824, 34144545792, 45916416000
Offset: 1

Views

Author

Paolo P. Lava, Jan 15 2015

Keywords

Examples

			540 = concat(5,40) -> sigma(5) = 6, sigma(40) = 90 and 6*90 = 540.
2352 = concat(23,52) -> sigma(23) = 24, sigma(52) = 98 and 24*98 = 2352.
28224 = concat(28,224) -> sigma(28) = 56, sigma(224) = 504 and 56*504 = 28222.
82890 = concat(8,2890) -> sigma(8) = 15, sigma(2890) = 5526 and 15*5526 = 82890.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if sigma(s)*sigma(t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[ DivisorSigma[1, FromDigits@ Take[ idn, {1, i}]] DivisorSigma[1, FromDigits@ Take[ idn, {i + 1, lng + 1}]], {i, lng}], n]]; k = 1; lst = {}; While[k < 1310000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 19 2015 *)
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == sigma(na)*sigma(nb)), return (1)););} \\ Michel Marcus, Jan 15 2015

Extensions

a(8) from Michel Marcus, Jan 15 2015
a(9)-a(17) from Robert G. Wilson v, Jan 18 2015
Missing a(14) and a(19)-a(23) from Giovanni Resta, Jul 17 2015
Terms a(24) onward from Max Alekseyev, May 25 2025