cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A253825 Numbers m = concat(s,t) such that m = (sigma(s)-s) * (sigma(t)-t), where sigma(x)-x is the sum of the aliquot parts of x.

Original entry on oeis.org

6396, 20680, 124416, 567816, 1719480, 7593432, 10538040, 36382320, 107277800, 123251968, 166601760, 327844840, 933363000, 1286859804, 2524125184, 3398418000, 4561432920, 4566915540, 4911440776, 7097433536, 16913792670, 20565608940, 21099997800, 27639552000
Offset: 1

Views

Author

Paolo P. Lava, Jan 15 2015

Keywords

Examples

			6396 = concat(63,96) -> sigma(63)-63 = 41, sigma(96)-96 = 156 and 41*156 = 6396.
20680 = concat(20,680) -> sigma(20)-20 = 22, sigma(680)-680 = 940 and 22*940 = 20680.
124416 = concat(12,4416) -> sigma(12)-12 = 16, sigma(4416)-4416 = 7776 and 16*7776 = 124416.
567816 = concat(567,816) -> sigma(567)-567 = 410, sigma(816)-816 = 1416 and 401*1416 = 567816.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if (sigma(s)-s)*(sigma(t)-t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[s = FromDigits@ Take[idn, {1, i}]; t = FromDigits@ Take[idn, {i + 1, lng + 1}]; (DivisorSigma[1, s] - s) (DivisorSigma[1, t] - t), {i, lng}], n]]; k = 1; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 26 2015 *)
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == (sigma(na)-na)*(sigma(nb)-nb)), return (1)););} \\ Michel Marcus, Jan 15 2015

Extensions

a(8)-a(9) from Robert G. Wilson v, Jan 26 2015
a(10)-a(24) from Hiroaki Yamanouchi, Sep 26 2015

A258813 Numbers k with the property that it is possible to write the base 2 expansion of k as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have sigma(a) + sigma (b) = sigma(k) - k.

Original entry on oeis.org

9, 15, 27, 39, 51, 77, 143, 207, 329, 377, 473, 611, 903, 1241, 1243, 1273, 1437, 1591, 2117, 2303, 2975, 4189, 8401, 8657, 11993, 13849, 15611, 16771, 18239, 18599, 19359, 25331, 28877, 37291, 41747, 41807, 61549, 67037, 72601, 82169, 83411, 83711, 87449, 99329
Offset: 1

Views

Author

Paolo P. Lava, Jun 11 2015

Keywords

Examples

			9 in base 2 is 1001. If we take 1001 = concat(10,01) then 10 and 01 converted to base 10 are 2 and 1. Finally sigma(2) + sigma(1) = sigma(9) - 9 = 4.
180953 in base 2 is 101100001011011001. If we take 101100001011011001 = concat(101100001011,011001) then 101100001011 and 011001 converted to base 10 are 2827 and 25. Finally sigma(2827) + sigma(25) = sigma(180953) - 180953 = 3127.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,j,k,n;
    for n from 1 to q do c:=convert(n,binary,decimal);
    j:=0; for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k),decimal,binary);
    b:=convert((c mod 10^k),decimal,binary);
    if a*b>0 then if sigma(a)+sigma(b)=sigma(n)-n then print(n);
    break; fi; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = {b = binary(n); if (#b > 1, for (k=1, #b-1, vba = Vecrev(vector(k, i, b[i])); vbb = Vecrev(vector(#b-k, i, b[k+i])); da = sum(i=1, #vba, vba[i]*2^(i-1)); db = sum(i=1, #vbb, vbb[i]*2^(i-1)); if (da && db && (sigma(da)+sigma(db) == sigma(n)-n), return(1));););} \\ Michel Marcus, Jun 13 2015

A159000 Numbers m such that m = s|t = phi(s)*sigma(t) for some numbers s and t, where "|" denotes concatenation.

Original entry on oeis.org

3360, 19440, 35712, 55800, 120960, 395808, 451584, 548640, 628992, 695520, 763344, 3008768, 3749760, 5602320, 17557344, 46902240, 55031040, 119627904, 162496048, 193933440, 243855360, 249793920, 374473800, 377677440, 548402400
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 04 2009

Keywords

Comments

A159001(n) gives the first part s of a(n).

Examples

			3008768 = phi(3008)*sigma(768) so 3008768 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    ntnQ[n_]:=MemberQ[(EulerPhi[#[[1]]]DivisorSigma[1,#[[2]]])==n&/@ Table[FromDigits/@TakeDrop[IntegerDigits[n],i],{i,IntegerLength[ n]-1}],True]; Select[Range[55*10^7], ntnQ] (* The program uses the TakeDrop function from Mathematica version 10 *) (* The program takes a long time to run *) (* Harvey P. Dale, Jan 01 2016 *)
  • PARI
    isA159000(n)={my(m);for(i=1,#Str(n)-1,m=n%10^i;if(m,m=divrem(n,sigma(m));if(m[2]==0&eulerphi(n\10^i)==m[1],return(i))));0} /* Charles R Greathouse IV, Apr 28 2010 */

Extensions

Corrected (a(3), a(4), and a(11) missing), extended past a(12), and edited by Charles R Greathouse IV, Apr 28 2010

A257897 Numbers n such that n = concat(a,b) and n | a^b + b^a , with a>0 and b>0.

Original entry on oeis.org

63, 103, 128, 147, 155, 212, 272, 292, 351, 452, 486, 497, 525, 527, 537, 584, 607, 624, 648, 729, 979, 999, 1024, 1296, 1323, 1359, 1533, 1541, 1575, 1809, 1872, 2048, 2050, 2107, 2187, 2448, 2512, 2537, 2564, 2763, 2793, 2886, 3072, 3357, 3927, 4096, 4263, 4284
Offset: 1

Views

Author

Paolo P. Lava, May 12 2015

Keywords

Comments

We can have different solutions for the same number. E.g.: 2048 divides both (20^48 + 48^20) and (204^8 + 8^204). The same occurs for 4096, 4263, 16807, 32768, 96957, 156672, 186624, 252081, 262144, 270729, 352947, 390624 … The first number with 3 different concatenations is 186624 that divides (18^6624 + 6624^18), (186^624 + 624^186) and (1866^24 + 24^1866).

Examples

			6^3 + 3^6 = 945 and 945 / 63 = 15;
10^3 + 3^10 = 60049 and 60049 / 103 = 583;
12^8 + 8^12 = 69149458432 and 69149458432 / 128 = 540230144; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if a>0 and b>0 then if type((a^b+b^a)/n,integer)
    then print(n); break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    tst[n_]:=Catch@Block[{a,b}, Do[a=Floor[n/10^k]; b=Mod[n,10^k]; If[Mod[ PowerMod[a, b, n] + PowerMod[b, a, n], n]==0, Throw@True], {k, IntegerLength[n]-1}]; False]; Select[Range@1000, tst] (* Giovanni Resta, May 12 2015 *)

A260144 Numbers k such that there exist two numbers a and b where k = a.b = sigma(a)*phi(b) ("." means concatenation).

Original entry on oeis.org

1568, 14049280, 140492800, 368089904, 506300928, 1404928000, 14049280000, 124856008704, 140492800000, 1404928000000
Offset: 1

Views

Author

Paolo P. Lava and Giovanni Resta, Jul 17 2015

Keywords

Comments

The sequence is infinite because, for m>0, 14049280*10^m = sigma(1404) * phi(9280*10^m).

Examples

			1568 is in the sequence because 1568 = sigma(156) * phi(8).
		

Crossrefs

Extensions

a(7)-a(10) from Max Alekseyev, May 26 2025

A251605 Numbers k = concat(s,t) such that k = antisigma(s) + antisigma(t), where antisigma(x) = A024816(x).

Original entry on oeis.org

226, 1046, 3881, 20206, 1970256, 57619059, 62109258
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2015

Keywords

Examples

			226 = concat(22,6); 22*23/2 - sigma(22) = 253 - 36 = 217; 6*7/2 - sigma(6) = 21 - 12 = 9. Finally 217 + 9 = 226.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k; global n; for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s>0 then if s*(s+1)/2-sigma(s)+t*(t+1)/2-sigma(t)=n
    then print(n); break; fi; fi; od; od; end: P(10^7);

Extensions

Incorrect term 240 removed by and a(6)-a(7) from Jinyuan Wang, Feb 16 2021

A258319 Numbers n such that n = concat(a,b) and n = phi(n) + phi(a) + phi(b), with a>0 and b>0, where phi(n) is the Euler totient function of n.

Original entry on oeis.org

25, 177, 1177, 2501, 17105, 21337, 22681, 32581, 217009, 409501, 561601, 577501, 861841, 1025821, 1401841, 1738081, 2836465, 8331361, 10284193, 19971901, 20103001, 27835921, 31949921, 34897501, 100763053, 107314217, 111512701, 121806001, 150658561, 155874001
Offset: 1

Views

Author

Paolo P. Lava, May 26 2015

Keywords

Examples

			25 = concat(2,5); phi(25) + phi(2) + phi(5) = 20 + 1 + 4 = 25;
177 = concat(1,77); phi(177) + phi(1) + phi(77) = 116 + 1 + 60 = 177; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, b, i; global n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if a>0 and b>0 then if phi(n)+phi(a)+phi(b)=n
    then print(n); break; fi; fi; od; od; end: P(10^9);

Extensions

a(18) inserted by Giovanni Resta, May 27 2015

A259670 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have antisigma(a) + antisigma(b) = n.

Original entry on oeis.org

50, 77, 179, 346, 347, 550, 1758, 1909, 9205, 27884, 30660, 37354, 52019, 88052, 107974, 131590, 164413, 232447, 295682, 326133, 328491, 1494561, 1541005, 1541851
Offset: 1

Views

Author

Paolo P. Lava, Jul 03 2015

Keywords

Examples

			50 in base 2 is 110010. If we take 110010 = concat(1100,10) then 1100 and 10 converted to base 10 are 12 and 2. Finally 12*13/2 - sigma(12) + 2*3/2 - sigma(2) = 78 - 28 + 3 - 3 = 50.
179 in base 2 is 1001101. If we take 1001101 = concat(11100,1) then 11100 and 1 converted to base 10 are 5 and 19. Finally 5*6/2 - sigma(5) + 19*20/2 - sigma(19) = 15 - 6 + 190 - 20 = 179.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,j,k,n;
    for n from 1 to q do c:=convert(n,binary,decimal);
    j:=0; for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k),decimal,binary);
    b:=convert((c mod 10^k),decimal,binary);
    if a*b>0 then if a*(a+1)/2-sigma(a)+b*(b+1)/2-sigma(b)=n then print(n);
    break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    f[n_] := Block[{d = IntegerDigits[n, 2], len = IntegerLength[n, 2], k}, ReplaceAll[Reap[Do[k = {FromDigits[Take[d, i], 2], FromDigits[Take[d, -(len - i)], 2]}; If[! MemberQ[k, 0], Sow@ k], {i, 1, len - 1}]], {} -> {1}][[-1, 1]]]; Select[Range@ 100000, MemberQ[Total /@ (# (# + 1)/2 - DivisorSigma[1, #] &) /@ f@ #, #] &] (* Michael De Vlieger, Jul 03 2015 *)

A260097 Numbers n = concat(s,t) such that n = sigma(s*t), where sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

124, 2352, 2604, 6804, 15240, 63180, 225302, 632400, 1531152, 2537040, 4592588, 7160400, 7603680, 26100144, 26378352, 31492032, 33747840, 49447728, 88385040, 104941200, 162496048, 175600040, 197499456, 403242624, 483741216, 797091840, 2077442640, 2942021520, 4045874976, 4828299840
Offset: 1

Views

Author

Paolo P. Lava, Jul 16 2015

Keywords

Examples

			124 = concat(12,4) and sigma(12*4) = sigma(48) = 124.
2352 = concat(23,52) and sigma(23*52) = sigma(1196) = 2352.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n,p; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if sigma(a*b)=n then print(n); break; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == sigma(na*nb)), return (1)); ); } \\ Michel Marcus, Jul 17 2015
    
  • Python
    from sympy import divisor_sigma
    A260097_list= []
    for n in range(11,10**6):
        s = str(n)
        for l in range(1, len(s)):
            m = int(s[:l])*int(s[l:])
            if m > 0 and n == divisor_sigma(m):
                A260097_list.append(n)
                break # Chai Wah Wu, Jul 18 2015

Extensions

a(14)-a(15) from Chai Wah Wu, Jul 18 2015
a(16)-a(28) from Lars Blomberg, Jul 21 2015
a(29)-a(30) from Giovanni Resta, Jul 24 2015
Showing 1-9 of 9 results.