cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159001 First part "s" of A159000(n).

Original entry on oeis.org

33, 19, 3, 5, 1209, 39, 4515, 54, 628, 695, 7, 3008, 374, 5, 17, 46, 5, 119, 1, 193933, 2438553, 24, 37, 3776, 54, 582, 1010472, 1067915, 2248, 46, 8080756, 811, 98, 10089515, 10538, 267794, 333070617, 334134, 561868, 159, 176, 1, 337435, 3, 37, 4677, 801, 101123, 13394006, 1714212, 377
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 07 2009

Keywords

Examples

			A159000(1) = 3360 = phi(33)*sigma(60) so a(1) = 33.
A159000(5) = 451584 = phi(4515)*sigma(84) so a(5) = 4515.
		

Crossrefs

Formula

a(n) = floor(A159000(n)/10^l), where l is such that phi(floor(A159000(n)/10^l)) * sigma(A159000(n)%10^l) = A159000(n). - Max Alekseyev, May 26 2025

Extensions

a(3), a(4), a(11) and more terms added using A159000 by Amiram Eldar, Mar 18 2024
a(34)-a(51) from Max Alekseyev, May 26 2025

A253824 Numbers m = concat(s,t) such that m = sigma(s) * sigma(t), where sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

540, 2352, 28224, 82890, 737856, 1524096, 1531152, 3429216, 17062920, 22264200, 23268600, 49447728, 104941200, 162496048, 197499456, 267450144, 502334784, 619672032, 2347826040, 2942021520, 4045874976, 4302305280, 9876226752, 22712348160, 24705882348, 33114541824, 34144545792, 45916416000
Offset: 1

Views

Author

Paolo P. Lava, Jan 15 2015

Keywords

Examples

			540 = concat(5,40) -> sigma(5) = 6, sigma(40) = 90 and 6*90 = 540.
2352 = concat(23,52) -> sigma(23) = 24, sigma(52) = 98 and 24*98 = 2352.
28224 = concat(28,224) -> sigma(28) = 56, sigma(224) = 504 and 56*504 = 28222.
82890 = concat(8,2890) -> sigma(8) = 15, sigma(2890) = 5526 and 15*5526 = 82890.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if sigma(s)*sigma(t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[ DivisorSigma[1, FromDigits@ Take[ idn, {1, i}]] DivisorSigma[1, FromDigits@ Take[ idn, {i + 1, lng + 1}]], {i, lng}], n]]; k = 1; lst = {}; While[k < 1310000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 19 2015 *)
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == sigma(na)*sigma(nb)), return (1)););} \\ Michel Marcus, Jan 15 2015

Extensions

a(8) from Michel Marcus, Jan 15 2015
a(9)-a(17) from Robert G. Wilson v, Jan 18 2015
Missing a(14) and a(19)-a(23) from Giovanni Resta, Jul 17 2015
Terms a(24) onward from Max Alekseyev, May 25 2025

A260144 Numbers k such that there exist two numbers a and b where k = a.b = sigma(a)*phi(b) ("." means concatenation).

Original entry on oeis.org

1568, 14049280, 140492800, 368089904, 506300928, 1404928000, 14049280000, 124856008704, 140492800000, 1404928000000
Offset: 1

Views

Author

Paolo P. Lava and Giovanni Resta, Jul 17 2015

Keywords

Comments

The sequence is infinite because, for m>0, 14049280*10^m = sigma(1404) * phi(9280*10^m).

Examples

			1568 is in the sequence because 1568 = sigma(156) * phi(8).
		

Crossrefs

Extensions

a(7)-a(10) from Max Alekseyev, May 26 2025
Showing 1-3 of 3 results.