cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253824 Numbers m = concat(s,t) such that m = sigma(s) * sigma(t), where sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

540, 2352, 28224, 82890, 737856, 1524096, 1531152, 3429216, 17062920, 22264200, 23268600, 49447728, 104941200, 162496048, 197499456, 267450144, 502334784, 619672032, 2347826040, 2942021520, 4045874976, 4302305280, 9876226752, 22712348160, 24705882348, 33114541824, 34144545792, 45916416000
Offset: 1

Views

Author

Paolo P. Lava, Jan 15 2015

Keywords

Examples

			540 = concat(5,40) -> sigma(5) = 6, sigma(40) = 90 and 6*90 = 540.
2352 = concat(23,52) -> sigma(23) = 24, sigma(52) = 98 and 24*98 = 2352.
28224 = concat(28,224) -> sigma(28) = 56, sigma(224) = 504 and 56*504 = 28222.
82890 = concat(8,2890) -> sigma(8) = 15, sigma(2890) = 5526 and 15*5526 = 82890.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if sigma(s)*sigma(t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[ DivisorSigma[1, FromDigits@ Take[ idn, {1, i}]] DivisorSigma[1, FromDigits@ Take[ idn, {i + 1, lng + 1}]], {i, lng}], n]]; k = 1; lst = {}; While[k < 1310000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 19 2015 *)
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == sigma(na)*sigma(nb)), return (1)););} \\ Michel Marcus, Jan 15 2015

Extensions

a(8) from Michel Marcus, Jan 15 2015
a(9)-a(17) from Robert G. Wilson v, Jan 18 2015
Missing a(14) and a(19)-a(23) from Giovanni Resta, Jul 17 2015
Terms a(24) onward from Max Alekseyev, May 25 2025

A159000 Numbers m such that m = s|t = phi(s)*sigma(t) for some numbers s and t, where "|" denotes concatenation.

Original entry on oeis.org

3360, 19440, 35712, 55800, 120960, 395808, 451584, 548640, 628992, 695520, 763344, 3008768, 3749760, 5602320, 17557344, 46902240, 55031040, 119627904, 162496048, 193933440, 243855360, 249793920, 374473800, 377677440, 548402400
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 04 2009

Keywords

Comments

A159001(n) gives the first part s of a(n).

Examples

			3008768 = phi(3008)*sigma(768) so 3008768 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    ntnQ[n_]:=MemberQ[(EulerPhi[#[[1]]]DivisorSigma[1,#[[2]]])==n&/@ Table[FromDigits/@TakeDrop[IntegerDigits[n],i],{i,IntegerLength[ n]-1}],True]; Select[Range[55*10^7], ntnQ] (* The program uses the TakeDrop function from Mathematica version 10 *) (* The program takes a long time to run *) (* Harvey P. Dale, Jan 01 2016 *)
  • PARI
    isA159000(n)={my(m);for(i=1,#Str(n)-1,m=n%10^i;if(m,m=divrem(n,sigma(m));if(m[2]==0&eulerphi(n\10^i)==m[1],return(i))));0} /* Charles R Greathouse IV, Apr 28 2010 */

Extensions

Corrected (a(3), a(4), and a(11) missing), extended past a(12), and edited by Charles R Greathouse IV, Apr 28 2010
Showing 1-2 of 2 results.