cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253828 Digit of Pi raised to the power of the next digit of Pi.

Original entry on oeis.org

3, 1, 4, 1, 1953125, 81, 64, 7776, 125, 243, 390625, 134217728, 4782969, 40353607, 729, 9, 8, 6561, 4096, 4096, 36, 64, 1296, 64, 27, 6561, 512, 9, 128, 40353607, 59049, 1, 0, 256, 16777216, 4096, 4, 1, 4782969, 7, 1, 10077696, 729, 19683, 387420489, 729, 2187
Offset: 1

Views

Author

Jonathan PP Martin, Jan 16 2015

Keywords

Comments

From Felix Fröhlich, Sep 23 2019: (Start)
The convention 0^0 = 1 was applied in computing the terms.
There are 61 values that can occur in this sequence, namely all numbers of the form x^y for some 0 <= x, y <= 9. (End)

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    Module[{nn=1000,pidg},pidg=Partition[RealDigits[Pi,10,nn][[1]],2,1];If[ # == {0,0},1,#[[1]]^#[[2]]]&/@pidg] (* Harvey P. Dale, Oct 24 2021 *)
  • PARI
    pistring(n) = default(realprecision, n+10); my(x=Pi); floor(x*10^n)
    pidigit(n) = pistring(n)-10*pistring(n-1)
    a(n) = pidigit(n-1)^pidigit(n) \\ Felix Fröhlich, Sep 23 2019

Formula

a(n) = A000796(n)^A000796(n+1). - Felix Fröhlich, Sep 23 2019

Extensions

More terms from Felix Fröhlich, Sep 23 2019