A253920 Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).
1, 5, 39, 760, 6494, 55518, 1095199, 9363623, 80056197, 1579275478, 13502337152, 115440979836, 2277314143357, 19470360808841, 166465812866595, 3283885415444596, 28076246784010850, 240043586712649434, 4735360491756963355, 40485928392182836139
Offset: 1
Examples
5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..950
- Index entries for linear recurrences with constant coefficients, signature (1,0,1442,-1442,0,-1,1).
Programs
-
Magma
I:=[1,5,39,760,6494,55518,1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
Mathematica
CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *) LinearRecurrence[{1,0,1442,-1442,0,-1,1},{1,5,39,760,6494,55518,1095199},20] (* Harvey P. Dale, Jul 04 2017 *)
-
PARI
Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
Formula
a(n) = a(n-1)+1442*a(n-3)-1442*a(n-4)-a(n-6)+a(n-7).
G.f.: x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1) / ((x-1)*(x^6-1442*x^3+1)).
Extensions
Corrected by Vincenzo Librandi, Jan 20 2015
Comments