cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253943 a(n) = 3*binomial(n+1,6).

Original entry on oeis.org

3, 21, 84, 252, 630, 1386, 2772, 5148, 9009, 15015, 24024, 37128, 55692, 81396, 116280, 162792, 223839, 302841, 403788, 531300, 690690, 888030, 1130220, 1425060, 1781325, 2208843, 2718576, 3322704, 4034712, 4869480, 5843376, 6974352, 8282043, 9787869, 11515140
Offset: 5

Views

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 5 elements, which is 3*C(n+1,6) (for n>=5), hence a(n) = 3*C(n+1,6) = 3*A000579(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Jan 20 2015

Examples

			For A={1,2,3,4,5,6} subsets with 5 elements are {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}.
Sum of 2 smallest elements of each subset:
a(6) = (1+2) + (1+2) + (1+2) + (1+2) + (1+3) + (2+3) = 21 = 3*C(6+1,6) = 3*A000579(6+1).
		

Crossrefs

Cf. A000579.

Programs

Formula

a(n) = 3*C(n+1,6) = 3*A000579(n+1).
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=5} 1/a(n) = 2/5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 64*log(2) - 661/15. (End)
From G. C. Greubel, Apr 03 2025: (Start)
G.f.: 3*x^5/(1-x)^7.
E.g.f.: (3/6!)*x^5*(x+6)*exp(x). (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015