cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A254005 Numbers that divide the reverse of the sum of their aliquot parts.

Original entry on oeis.org

1, 6, 2274, 44304, 229974, 498906, 4177662, 20671542, 22999974, 41673714, 73687923, 403999652, 479444901, 4158499614, 27378395352, 209659386726, 216276435966, 229999999974, 406406685462, 922964834547
Offset: 1

Views

Author

Paolo P. Lava, Jan 22 2015

Keywords

Comments

Noting 2274, 229974, and 22999974, 23*10^n-26 is a term herein for any n in A253968. - Hans Havermann, Jan 24 2015
Additionally, 404*10^(6*n)-348 is a term herein if this is 28 times a prime. Three such numbers are known: n = 1, 10, and 1608. - Hans Havermann, Jan 28 2015
a(21) > 10^12. - Giovanni Resta, May 09 2015

Examples

			sigma(1) - 1 = 0, Rev(0) = 0 and 0 / 1 = 0.
sigma(6) - 6 = 6, Rev(6) = 6 and 6 / 6 = 1.
sigma(2274) - 2274 = 2286, Rev(2286) = 6822 and 6822 / 2274 = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | Seqint(Reverse(Intseq(SumOfDivisors(n)-n))) mod n eq 0]; // Vincenzo Librandi, May 09 2015
  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if type(T(sigma(n)-n)/n,integer) then print(n);
    fi; od; end: P(10^9);
  • Mathematica
    fQ[n_] := Mod[ FromDigits@ Reverse@ IntegerDigits[ DivisorSigma[1, n] - n], n] == 0; k = 1; lst = {}; While[k < 1000000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jan 28 2015 *)
  • PARI
    rev(n) = subst(Polrev(digits(n)), x, 10);
    isok(n) = rev(sigma(n)-n) % n == 0; \\ Michel Marcus, Jan 25 2015
    

Extensions

More terms from Hans Havermann, Jan 24 2015
a(13) from Robert G. Wilson v, Jan 29 2015
a(14)-a(20) from Giovanni Resta, May 09 2015
Showing 1-1 of 1 results.