A254127 The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.
1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
Offset: 0
Keywords
Examples
a(2)=7 for the following 7 tilings: _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_|_| |_ _| |_|_| | |_| |_| | |_ _| | | | |_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
Links
- Liang Kai, Table of n, a(n) for n = 0..27 (terms 0..15 from Steve Butler)
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
Programs
-
SageMath
def matrix_entry(L1, L2, n): tally=0 for i in range(n-1): if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2): tally+=1 return 2^tally def a(n): index_set={} counter=0 for C in Combinations(n): index_set[counter]=C counter+=1 current_v=[0]*counter current_v[0]=1 for t in range(n): new_v=[0]*counter for i in range(counter): for j in range(counter): new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n) current_v=new_v return current_v[0] for n in range(0, 10): print(a(n), end=', ')
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 30 2015
Comments