A254151 Number of independent sets in the generalized Aztec diamond E(L_7,L_{2n-1}).
1, 16, 314, 6556, 139344, 2976416, 63663808, 1362242592, 29151501760, 623849225024, 13350628082560, 285709494797952, 6114316283697408, 130849237522680064, 2800235203724240384, 59926350645878761984, 1282452098548524184576, 27445078313878468469760
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (30,-202,396,-248,32).
Programs
-
Mathematica
LinearRecurrence[{30,-202,396,-248,32},{1,16,314,6556,139344},20] (* Harvey P. Dale, May 31 2024 *)
-
PARI
Vec((1 - 14*x + 36*x^2 - 28*x^3 + 4*x^4)/(1 - 30*x + 202*x^2 - 396*x^3 + 248*x^4 - 32*x^5) + O(x^20)) \\ Andrew Howroyd, Jan 16 2020
Formula
Empirical g.f.: -(4*x^4-28*x^3+36*x^2-14*x+1) / (32*x^5-248*x^4+396*x^3-202*x^2+30*x-1). - Colin Barker, Jan 26 2015
The above g.f. is correct. See A331406 for bounds on the order of the recurrence. - Andrew Howroyd, Jan 16 2020
Extensions
Terms a(12) and beyond from Andrew Howroyd, Jan 15 2020
Comments