A254288 Numbers k such that 4*k + {1, 3, 7, 9, 13, 19} are all prime.
1, 370, 41425, 81535, 255625, 267175, 311590, 365350, 1054570, 1381750, 2533600, 2975125, 3266080, 3930205, 4684210, 4782385, 4802860, 5940850, 6414610, 7986565, 8429245, 8570470, 8636305, 8810080, 9270715, 9857980, 10459525, 13708225, 13917490, 15127720, 15252460
Offset: 1
Keywords
Examples
a(2) = 370; 4*370 + 1 = 1481; 4*370 + 3 = 1483; 4*370 + 7 = 1487; 4*370 + 9 = 1489; 4*370 + 13 = 1493; 4*370 + 19 = 1499; All six are prime.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 726 terms from K. D. Bajpai)
Programs
-
Magma
[n: n in [0..10^8] | forall{4*n+i: i in [1, 3, 7, 9, 13, 19] | IsPrime(4*n+i)}]; // Vincenzo Librandi, Mar 12 2015
-
Mathematica
Select[Range[5*10^7], PrimeQ[4*# + 1] && PrimeQ[4*# + 3] && PrimeQ[4*# + 7] && PrimeQ[4*# + 9] && PrimeQ[4*# + 13] && PrimeQ[4*# + 19] &] Select[Range[5*10^6], And @@ PrimeQ /@ ({1, 3, 7, 9, 13, 19} + 4 #) &]
-
PARI
for(n=1,10^7, if( isprime(4*n + 1) && isprime(4*n + 3) &&isprime(4*n + 7) &&isprime(4*n + 9) &&isprime(4*n + 13) &&isprime(4*n + 19) , print1(n,", ")))
Comments