A254407 a(n) = n*(n+1)*(11*n +10)/6.
0, 7, 32, 86, 180, 325, 532, 812, 1176, 1635, 2200, 2882, 3692, 4641, 5740, 7000, 8432, 10047, 11856, 13870, 16100, 18557, 21252, 24196, 27400, 30875, 34632, 38682, 43036, 47705, 52700, 58032, 63712, 69751, 76160, 82950, 90132, 97717, 105716, 114140, 123000
Offset: 0
Examples
532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Polygonal numbers: Table of values.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n+1)*(11*n+10)/6: n in [0..40]];
-
Maple
A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # G. C. Greubel, Mar 31 2021
-
Mathematica
Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}] Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* Vincenzo Librandi, Jan 31 2015 *)
-
Maxima
makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
-
PARI
vector(40, n, n--; n*(n+1)*(11*n+10)/6)
-
Sage
[n*(n+1)*(11*n+10)/6 for n in (0..40)]
Formula
G.f.: x*(7 + 4*x)/(1 - x)^4.
a(-n) = -A132112(n-1).
a(n) = Sum_{k=0..n} A011875(11*k+2).
Equivalently, partial sums of A254963.
E.g.f.: x*(42 + 54*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021
Comments